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Abstract

A combination of a domain decomposition algorithm and
a finite element method for the efficient three dimensional
simulation of electro-quasistatic multi-scale problems is
presented and applied to the simulation of the dielectric
properties of biological cell suspensions. In this scheme,
cells and membranes are discretized by meshes fitted to
their geometrical scales. The simulation can be carried
out for all considered cells in parallel. The data exchange
between the particular meshes relies on Robin boundary
conditions assuring the conservation of fluxes according
to Maxwell’s equations. Efficient algorithms are provided
for data exchange between the meshes. From simulation
results, biologically relevant quantities, such as the trans-
membrane potential, are computed.

1 Introduction

Suspensions of biological cells exhibit a typical dispersion
behavior when exposed to electromagnetic fields [9]: A
high value of its relative permittivity for low frequencies
falls down to the value of the suspension medium (typi-
cally water) within the frequency range between 10 kHz
and 10 MHz. This behavior is a consequence of the peri-
odic charging and discharging of the capacitors composed
by the electrically badly conducting cell membrane and the
relatively well conducting inner and outer regions of the
cell. The formation of a capacitive field over the cell mem-
brane is associated with a relaxation constant, whose mag-
nitude in comparison to the period of the triggering field
determines the effective capacitance of the cell, and hence,
the susceptibility of the cell suspension for polarization.
An interest in a deeper insight in a cell’s polarization in an
exterior electromagnetic field emerges from several points:
to understand the impact of radio frequencies on biological
cells, to compute the electrical properties of cell solutions,
or to solve the inverse problem in order to identify cell types
from spectroscopical properties of the solution. Cell prop-
erties can, e.g., be concluded from a cell’s trajectory in an
inhomogeneous electric field, see [13].
Analytical homogenization techniques for suspensions of
spherical particles and of spherical shells have been intro-
duced by Debye [6] and applied by, e.g., Schwan and Fos-
ter in a biological context [8, 17]. An electro-quasi-static

(EQS) approximation to Maxwell’s equations is relevant in
this case [5], since the wavelengths occurring in the respec-
tive frequency domain are much larger than the dimensions
of a cell, which amount to approximately 1 µm for many
types of cells, and since electrical induction may be ne-
glected. First attempts at the numerical simulation of the
polarization of single cells have been presented by Asami
et al. [1] based on difference methods and later on finite
element (FE) simulations [4], allowing for a better repre-
sentation of complex geometries. Further applications of
these methods are presented, e.g., in [2, 3].
The simulation of cell systems which are exposed to elec-
tromagnetic fields faces two crucial problems: first, the
simulation of an individual cell defines a multi scale prob-
lem, since the membrane is 2-3 orders of magnitude smaller
than the cell itself. Second, a homogenization method is re-
quired to derive the electric properties of the whole system
from the study of a small number of individual cells.
In this article, a method is presented, which reaches both
objectives in an efficient way by a combination of a domain
decomposition algorithm as presented by Lions [14, 15, 16]
and an FE-simulation of the EQS-system. In this scheme,
cells and membranes are discretized by meshes fitted to
their geometrical scales. The simulation can be carried
out for all considered cells in parallel. The data exchange
between the particular meshes relies on Robin boundary
conditions assuring the conservation of fluxes according to
Maxwell’s equations. In contrast to [5], a thee dimensional
setting is considered here, and more efficient mesh coupling
algorithms are employed. Both the time harmonic and the
transient case have been implemented, although the presen-
tation will focus on the time harmonic case. From simu-
lation results, biologically relevant quantities, such as the
transmembrane potential, are computed. The algorithm is
implemented in a fast object oriented library [7].

2 Domain decomposition and EQS-model

In the following, ∇ represents the nabla operator, and
hence, ∇× denotes the curl-, ∇· the divergence-, and ∇ the
gradient-operator. If biological cells are exposed to radio
frequencies in the range between 10 kHz and 10 MHz, wave
phenomena may be neglected, since possible waves possess
wave lengths on a much larger scale than the size of the
cells. While capacitive fields are significant, electric induc-



tion can be neglected, i.e., the approximation ∇×~E =~0 is
valid, and an electric scalar potential

~E =−∇ϕ (1)

exists. Applying ∇· on the Ampère-Maxwell law

∇× ~H = ~J+
∂~D
∂ t

(2)

in this situation and profiting from the material relations

~J = κ~E
~D = εrε0~E

(3)

with electric field constant ε0 for linear isotropic materials
with conductivity κ and relative permittivity εr leads to-
gether with the potential relation (1) to

∇ ·
(

κ∇ϕ + ε∇
∂ϕ

∂ t

)
= 0 . (4)

Now the whole domain Ω is considered partitioned in a col-
lection of subdomains Ωi, i = 1, . . . ,N, with mutual inter-
faces Γik = Ωi ∩Ωk, which may be empty. In the follow-
ing, a quantity indexed with i denotes the restriction of that
field to the subdomain Ωi. On nonempty interfaces Γik, the
following continuity relations hold (for simplicity, we just
demonstrate the case i = 2 and k = 1 without loss of gener-
ality) due to the continuity of the potential, the conservation
of electric fluxes and the continuity equation:

ϕ2−ϕ1 = 0 , (5)

~n ·
(
~D2−~D1

)
= σ21 , (6)

~n ·
(
~J2− ~J1

)
=−∂σ21

∂ t
(7)

for the electric flux density ~D = −εrε0∇ϕ and the current
density ~J = −κ∇ϕ on the interface. Here σ21 denotes a
temporally and spatially varying surface charge density on
the interface between the two neighboring domains.
In time harmonic setting the potential can be represented by

ϕ(~r, t) = Re
(

ϕ(~r)exp(jωt)
)

(8)

where ϕ fullfills the model equation

∇ ·
(

κ ∇ϕ

)
= 0 (9)

of the EQS-system, where κ = κ+ jωεrε0 denotes the com-
plex conductivity for angular frequency ω . Equation 5
yields the Dirichlet-boundary-condition

ϕ
1

∣∣∣∣
Γ21

= ϕ
2

∣∣∣∣
Γ21

. (10)

while a comparison of (7) and the time derivative of (6)
leads to the Neumann-boundary condition

κ1
∂ϕ

1
∂n

∣∣∣∣
Γ21

= κ2
∂ϕ

2
∂n

∣∣∣∣
Γ21

, (11)

holding at the same time with the derivative ∂

∂n in the direc-
tion of the normal vector pointing from Ω1 to Ω2. Follow-
ing [14, 15, 16] the conditions 10 and 11 are combined to a
Robin type boundary condition, i.e., a linear combination of
both, to enable a parallel computation on each subdomain
of the decomposed domain:

ϕ
1
+λκ1

∂ϕ
1

∂n

∣∣∣∣
Γ21

= ϕ
2
+λκ2

∂ϕ
2

∂n

∣∣∣∣
Γ21

. (12)

The choice of the positive parameter λ influences the speed
of the convergence of the iteration [5]. Starting from any
estimate for the Robin boundary data on each non empty in-
terface Γik, the system (8) can be solved in any Ωi, yielding
a set of new Robin boundary conditions on all interfaces.
This process will then be iterated until the condition∫

Γik

∣∣∣ϕ`
k
−ϕ

`
i

∣∣∣2 ds≤ δ (13)

holds on each interface Γik for a chosen threshold δ > 0.
Here, the upper index denotes the iteration number `, and
integration is carried out with respect to arc length. To avoid
the evaluation of the numerically badly conditioned gradi-
ent in (12), the right hand sides in these Robin boundary
conditions can be computed iteratively via two sequences
of functions g`i , i = 1,2, ` ∈ N [10]. Hence, the boundary
conditions take the form

ϕ
`
i
+λκ i∇ϕ

`
i
·~n = g`i , (14)

with i = 1,2. The functions g`i can conveniently be com-
puted during itration via the update formulae

g`+1
1 = 2ϕ

`
2
−g`2 ,

g`+1
2 = 2ϕ

`
1
−g`1 .

(15)

3 Discretization and data exchange

To solve the FE problems occurring in each iteration step,
an efficient implementation of the FE method is employed
[7]. This leads to linear systems of equations whose right
hand sides depend on data of the neighboring domains from
the preceding time step. Hence, they can all be computed
in parallel. As the computation time for FE procedures usu-
ally grows superlinear with increasing problem size, the it-
eration scheme does not only help to bridge different scales,
but also leads to a reduction of computing time. To obtain
the boundary data in each step, the solution computed on
an interface in one domain must be evaluated at particu-
lar points to provide the associated degrees of freedom of
the FE discretization in the neighboring domain. As long
as any degree of freedom on one domain is one to one as-
sociated with one of the neighboring domain, this task is
simple. However, for meshes on different scales it is not
efficient to enforce that each degree of freedom is shared
by the other mesh. Hence, interpolation techniques have
to be applied. However, such methods lead to poor results,



Figure 1. No associated point can be found for data transfer
between the meshes [13].

if values for points have to be determined that are located
outside the domain covered by the other mesh (see Figure
1). To avoid this problem, an auxiliary toroidal domain (in
three dimensions) is patched over the interface such that
the method originally formulated for non-overlapping do-
mains becomes a scheme for overlapping domains as de-
picted in Figure 2: in the discretization of the original
non-overlapping formulation of the interface problem (top)
holes can in general not be avoided (middle): By introduc-
ing an auxiliary domain, whose boundary components are
contained in exactly one of the two neighboring domains,
the data transfer can be achieved by fast point location (bot-
tom). The physical interface is now an interior surface of
the auxiliary domain, where each vertex of one mesh on the
interface corresponds to a geometrically identical vertex of
the other mesh. For an efficient retrieval of corresponding
points in the overlapping case an efficient point location al-
gorithm has been implemented [12].
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Figure 2. Original problem (top), discretization with hole
(middle), and patched version (bottom) [13].

4 Some results on cell suspensions

Various versions of the model described above have been
implemented and validated, and parameter studies have
been carried out (e.g., [5, 11, 12, 13]). Figure 3 shows,
e.g., the mesh of a CAD-model of a small cube of water
containing an ellipsoidal cell. In Figure 4, the dispersion of
the permittivity computed for such a system is displayed,
where K denotes the ratio between the varied length of the
two equally long smaller semi axes and the unique longer
semi axis, which is held at constant size and aligned with
those faces of the cube which serve as electrodes. The shape
is varied from a sphere K = 1 to that of a rod K = 8. As

Figure 3. Meshed CAD-model of a cell in suspension [13].
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Figure 4. Dispersion curve for ellipsoidal cells with differ-
ent aspect radii K [13].

expected, the sphere shows the highest capability for polar-
ization, witch decreases with increasing deviation from the
sphere. The different dispersion curves for different cell
shapes correspond to a different polarization, and, hence to
a different assumed dipole moment of the cell. Since an
inhomogeneous electrical field yields a non-zero resulting
force on a dipole, a separation of different cells (or other
particles) based on different dispersion behavior becomes
possible [13]. Further extended parameter studies includ-
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Figure 5. Change of the transmembrane potential (TMP)
due to the external field for different aspect radii K.

ing different cell shapes and orientations have been carried
out in [11]. With the help of the numerically determined



electric potential ϕ , the influence of the external field on a
cell’s transmembrane potential can, e.g., be determined. In
Figure 5, the magnitude of the additional contribution is de-
picted for the cell models considered in Figure 4. The trans-
membrane potential takes a predominant role for a cell’s
nutrition and ion balance.

5 Conclusions and outlook

The presented domain decomposition algorithm has proven
to lead to accurate results of electrical properties of cell
systems. Its capability of parallel treatment makes it an
efficient method to solve large EQS-systems. Hence, the
electric properties of large systems of biological cells can
be numerically studied, which offers a wide range of appli-
cations. A method for the numerical homogenization of bi-
ological multi-cell systems such as cell suspensions is, e.g.,
currently implemented. In this scheme, the interior of each
cell and each cell membrane in a representative volume el-
ement as well as the surrounding medium are individually
meshed. After application of the scheme described in this
article, the mean permittivity of the cell suspension is com-
puted as, e.g., shown in [5]. Further, the presented numer-
ical method can be used to develop methods for the sepa-
ration of particles, which are first polarized by an external
field and then differently accelerated in an inhomogeneous
electric field due to different dipole moments. A numerical
method for this has already been presented in [13]. An-
other subsequent step is to study the electric properties of
cell systems that arise when the polarization of substruc-
tures of cells are considered. This should lead to a further
dispersion at higher frequencies that has not been exam-
ined yet. By also augmenting the simulation by resonating
molecules, a realistic electromagnetic cell model should be
reached step by step and used in biotechnological engineer-
ing and for the prediction of possible hazards.
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