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Abstract

A matched wave in connection with a boundary is a plane
wave that satisfies the boundary condition by itself. In other
words, a single wave can exist, and its phase can propa-
gate either towards the boundary or away from it. Using a
four-parameter classification of impedance boundaries, the
conditions for matched waves are discussed.

1 Introduction

The impedance boundary condition between tangential
electric and magnetic fields reads

E =Z,-nxnH (1)

on a surface with unit normal vector n. Note the nor-
malization: here the impedance dyadic is dimensionless.
A well-known special case is the perfect electric conduct-
ing surface for which Zs; = 0. However, due to the two-
dimensionality, the impedance dyadic contains in general
four independent parameters, which can be complex. Let
us study how a plane wave is reflected from a boundary
with condition (1).

2 Matched waves

In general the reflection from a boundary depends, in ad-
dition to the boundary parameters, also on the polarization
and state of incidence of the incoming wave. Assuming a
planar boundary with a given condition, there are constella-
tions for a plane-wave excitation (incidence angle and po-
larization) when a single plane wave satisfies the boundary
condition by itself. It is then called a matched wave [1].
These correspond to cases when the reflection coefficient
or its inverse vanishes. In the following, let us look for the
matched-wave conditions the impedance boundaries.

The condition (1) can be written as

a;-E+b;-noH 0 2
a-E+by-nH = 0 3)

with
a; = ﬁ7 b =— xy)'Z +Zxxy “4)
=y, bi=-Z,8+7,§ (®))

Assume the coordinate system such that the planar
impedance boundary is xy-plane and free space fills the half
space for z > 0, the normal being n = Z. The incident plane
wave impinges from the upper half space with wave vector

k' =k, —k,n (6)

where k; is the transversal part of the wave vector, being
equal also in the reflected wave vector

K =k, +kn (7)
Denote futher
c’i :kixbl—koal ¢; =K xbj —koa; ®)
¢h =k xby—koay ¢ =Kk xby—koa ©)
(10)

where k(% = wzeol,tg. As shown in [1], the matched-wave
condition happens for

J=k.¢ixch=0 (11)
for which the incident wave can exist by itself, and also

J =k"-¢|xc)=0 (12)
in which case only a reflected wave exists.
3 Decomposition of the impedance dyadic

Following [2], let us decompose the surface impedance
dyadic into four elements:

ESZZIT—FZ‘]j-i-ZKE—&-ZLf (13)

where the two-dimensional dyadics are (in the xy-base)

[=%%+§§ J=-%9+9% (14)
K=%%-§9 L=%§+9§% (15)

Note that I and J are independent of the chosen base. The
spherical coordinate angles are defined in the normal way:

cos® =k, /ko, cosep =% Kk /k (16)



4 Matched-wave conditions
4.1 Boundary of type I

The simplest boundary condition is that only the dyadic I
remains in (13): Zy = Zx = Z; = 0. Then the impedance
is isotropic and reciprocal, with amplitude Z;. As is known
[2], this boundary is lossless only if Z; is imaginary. It is
also known that the boundary is lossy if the real part of
the impedance is positive, and active for negative values.
Hence it is natural to start looking for matched wave from
real Z; values.

Due to the fact that the boundary is isotropic, the reflection
coefficient is not dependent on the azimuth angle ¢ of the
incident wave. The conditions for matched waves are the
following connection between the incidence angle and the
impedance parameter:

1
Zy=+cosO, Zj=+—— 17
cos 6
where the upper signs correspond to zeros of the reflection,
and lower signs for the case of existing reflection with zero
incidence.

4.2 Boundary of type J

For only Z; # 0, we have the PEMC boundary [3] where
the commonly-used admittance parameter M is connected
to this normalized impedance as Z; = 1/(noM). In this
case the boundary is lossless for real values of Z;. And as
known, this is the only non-reciprocal impedance boundary
condition.

If Z; is imaginary, the boundary is always active, indepen-
dently of the sign. This has also been noted in the study on
lossy PEMC media in [4] where it was noted that PEMC
cannot be lossy without an additional symmetric part to the
impedance dyadic.

Again, the surface is isotropic (reflection is not dependent
on ¢). But what is interesting is that the matched wave
condition is also independent of 8! The matching happens
at Z; = £j. And both the zero and infinity of the reflection
happen at the same time, independently of the incidence
angle.

4.3 Boundaries of type K and L

As is seen from expansions (14), impedance conditions
with nonzero Zg or Z;, make the surface anisotropic. Hence
also the incidence and reflection directions for matched
waves will depend on the azimuth angle ¢. For these
boundaries to be lossless it is required that Zx and Z;, have
to be purely imaginary. The boundaries are reciprocal for
all parameter values.

Figures 1 and 2 show the conditions for matched waves in
the 6 — ¢ plane for K boundary with Zx = 2 and L bound-
ary for Z; = 1.2. The two conditions (zero or pole of the
reflection coefficient) can be seen to occur symmetrically in
both cases: a 90° rotation in the azimuth plane interchanges
the two matching conditions.

This also means that the sign of Zg or Z; does not tell
whether the surface is active or passive. It depends on the
incidence angle and polarization of the wave.

20F pRSRRRRES =
C

150 I ———

£ 10} /’"___—_—_ .

05 \\-1_'_‘——————_ _

000 L L L 1 r-

00 0.1 02 03 04 05

&l

Figure 1. The conditions for a matched wave for a bound-

ary condition with Z; = 2K. Blue line: matched incident
wave, orange line: matched reflected wave.
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Figure 2. The conditions for a matched wave for a bound-

ary condition with Z = 1.2L. Blue line: matched incident
wave, orange line: matched reflected wave.

5 Conclusion

The conditions for existence of matched waves in connec-
tion with basic classes of impedance boundaries were dis-
cussed. In the presentation, we will extend the results to the
polarization of matched waves and also discuss the perspec-
tives of complex-values impedance parameters for which
surface- and leaky-wave type matching may occur.
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