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Random processes metamodeling applied to dosimetry
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Abstract

Advanced computational tools take advantage of progress
in high-performance calculation (HPC). Nowadays the
wireless network design is simulated using software for
the purpose of predicting coverage, capacity and through-
put of planned networks. Despite these progress in HPC,
uncertainty quantification requests enormous calculations
which are often unaffordable due to the computational bur-
den. Surrogate models have been investigated to overcome
such a limitation and are used to date in most of the en-
gineering domains. Previous study explored a 4G-induced
exposure to Electromagnetic Fields in terms of propagation
environments using stochastic city models. These stochas-
tic models are governed by a few Constant Parameters (CP),
such as, built surface, height of building or length of streets.
The influence of these CP on the EMF exposure should
be investigated by a sensitivity analysis. To do so, an ef-
ficient surrogate method dedicated to random processes is
needed. Relative study is important but scant. To overcome
such a limit, this paper proposes an innovative approach to
built surrogate models for stochastic simulators based on
Karhunen-Loève expansion combined with the polynomial
chaos expansion to surrogate the covariance.

1 Introduction

To assess the day-to-day exposure generated by both up-
link and downlink transmissions for an entire population
in a geographical area, a new exposure metric called Ex-
posure Index (EI) was developed in the framework of the
European LEXNET project [1]. To characterize the EMF
exposure using such an EI metric, many parameters, e.g.,
propagation environments, received and emitted powers,
etc. should be taken into account. As a matter of fact, RF
wave propagation in a geographical area plays an important
role in assessing received and emitted powers as well as
mobile throughputs. Meanwhile, building and terrain data
vary from one city to another. One of the main challenges
in RF waves propagation modeling is to integrate influences
of these data into the propagation model. Theoretically, the
received power P can be modeled in terms of the distance d
between the transmitter and the receiver as well as the Path
Loss Exponent (PLE, a.k.a., α), as follows:

P(d) = β −10α log10(d) (1)

Let us consider a received power vector P according to the
corresponding distance vector d. Through the approach of
least square solution for linear systems, the path loss model
can be characterized by parameter α and β . Indeed, α is
linked to the energy attenuation between the transmitter and
the receiver, which varies widely across the propagation en-
vironment (e.g., α equals to 2 in free space). Therefore, to
cover propagation environment possibilities, stochastic ge-
ometry was used in modeling the building distribution and
terrain topology [2]. City models were built stochastically
and governed by the same rules of urbanization as shown in
Table 1. One example selected from 500 3-D urban-based
city samples is illustrated in Fig.1.

Table 1. Mean values for morphological features of a typi-
cal urban city

Parameters Mean values
x1: Street width 14 m
x2: Building height 15 m
x3: Building facade 50 m
x4: Anisotropy 0.7

Figure 1. 3D stochastic city model

Thus a statistical approach was proposed to estimate the
probability law of the exponent α via ray-launching tech-
nique using stochastic city models. Such a ray-launching
technique is often used to propagate EMF in urban areas
[3]. Briefly, N rays were launched from an antenna in-
stalled at the center of a given sample city (500 samples in
total), and they produce reflections. Hence, the EM attenu-
ation map can be estimated by assessing the rays that hit the
measure plane 1.5 m above the ground. Finally, the corre-
sponding α can be estimated via Equation (1) by using this
power map. Results derived from 500 simulations shows



that a typical urban-based α follows a Gamma distribution.
In the study of Huang et al.[4], this distribution was further
used as input to evaluate the population RF exposure.

It should be noted that the population RF exposure is highly
linked to the geographical region’s characteristics (see Ta-
ble 1). That is why, their influences on global EMF expo-
sure should be investigated. However, in our case, at a given
input value (i.e., building height, street width, building fa-
cade, anisotropy), the output is not one value but a proba-
bility density function (i.e., distribution of α) that needs to
be characterized. As a consequence, surrogating a random
one is an emerging question to be solved. The question of
surrogating stochastic simulators has arisen only recently
in the literature, mainly based on surrogating, only, the two
first moment of the output distribution [5], or based on the
assumption that the true model is a realization of a Gaus-
sian process [6] which is a strong assumption that does not
necessarily hold on practice. This study propose a general
approach to surrogate the process with no assumption on
the distribution.

2 Stochastic process modeling

Let H (t,ω) be a random process of second order with zero
mean, where t is a deterministic vector and ω belonging
to the space of random events Ω, and C(s, t) its covari-
ance, this approach represents a metamodel based on the
Karhunen-loève decomposition.

2.1 Karhunen-Loève Expansion

Karhunen-Loève (KL) expansion [7] is a spectral decom-
position in a infinite linear combination of orthogonal func-
tions as:

H (t,ω) = lim
p→∞

p

∑
i=1

√
λiξi(ω)φi(t) (2)

where {ξi(ω), i ∈ N} is a set of random variables to be
determined, λn and φn(t) are, respectively, eigenvalues and
eigenvectors of C(s, t).

2.2 Surrogate modeling of a stochastic pro-
cess

Traditionally KL decomposition is used to simulate and
represent a stochastic process analogous to Fourier series
representation of a function. In this work, KL is rather used
to surrogate H . As a first step we run simulations to build
a numerical covariance of H denoted Ĉ. Eigendecomposi-
tion of Ĉ was then carried out. The H surrogate, i.e. Ĥ ,
can be written as follows:

Ĥ (t,ω) =
N

∑
i=1

√
λiξi(ω)φi(t) (3)

Where ξi are orthogonal Gaussian variables. The KL ex-
pansion is optimal in minimizing the mean square error [8].

2.3 Surrogate model of the covariance

Stochastic simulators are often time consuming, in our con-
text one run takes 3 hours. Building the covariance matrix
requires N.M runs, N is the number of points whereas M
denotes the realizations on each point. That is why we need
to surrogate the covariance. Deterministic approaches like
Kriging, Polynomial Chaos (PC) interpolation [9] or sup-
port vector machines (SVM) can be carried to surrogate Ĉ.
Let C̃ be the PC surrogate of Ĉ, thus KL decomposition will
be carried on C̃ instead of Ĉ.

2.4 Case study

We consider a simulated Gaussian process defined on
[0,1]×Ω and the corresponding covariance Ĉ on N points.
A PC surrogate model of Ĉ is constructed, the KL decom-
position is then applied to surrogate the stochastic process.
On a given new point t∗ we can predict the probability dis-
tribution as in Fig.2.

Figure 2. left, Comparison of empirical Cumulative Den-
sity Function (blue curve) with the surrogated one (red
dashed curve), right, quantile-quantile plot comparing the
two probability distributions

3 Conclusion

This work proposed an innovative approach of stochastic
metamodeling using deterministic metamodeling ap-
proaches with KL spectral decomposition. The accuracy
of the metamodel depends on N and M as well as the
precision of the expansions. Flowing works will present
the application of this approach to the exposure estimation
and to the α assessment.
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