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Abstract 
 

Following the development of the Empirical Canadian 

High Arctic Ionospheric Model (E-CHAIM)’s F2-peak 

and topside components, we have now undertaken the 

challenge of creating a matching bottomside for E-

CHAIM. For this bottomside, we have developed a 

variable semi-Epstein layer parameterization, where the 

scale thicknesses of this layer are represented by a sum of 

layer functions associated with the E-region, F1-layer, and 

F2-layer. The coefficients of each of these layers are 

independently modeled using a spherical cap harmonic 

expansion in magnetic latitude and magnetic local time to 

represent horizontal and diurnal variability. A Fourier 

expansion in day of year is used to represent seasonal 

variations. By modeling our bottomside in the scale 

thickness domain of a single layer, we avoid the need for 

an F1-layer occurrence trigger, such as that used by the 

International Reference Ionosphere (IRI).  
 

This study details the E-CHAIM bottomside profiler, 

whose development was informed by challenges that have 

been reported in the use of the IRI and NeQuick.  
 

1. Introduction 
 

The bottomside of E-CHAIM is, perhaps, the most 

challenging component of the model. The bottomside is 

highly vertically structured and consists of layers with 

very different or independent physical dynamics. This 

difference in the behaviour of the ionosphere’s various 

bottomside layers and the tendency of some of these 

layers to only exist part of the time (F1-layer/ledge and E-

region) necessitates that one takes separate considerations 

for each of these regions.  
 

In light of this challenge, one would be tempted to attempt 

to re-fit current standards like the IRI and NeQuick; 

however, each of these formulations have been found to 

exhibit undesirable behaviour that we here wish to avoid. 
 

2.1 Current Standards: IRI 
 

The IRI bottomside is composed of five sub-regions: the 

F2-region, the F1-region, an Intermediate region between 

the F1-region and the E-F valley, an E-F valley region, 

and a lower E-region/D-region [Bilitza, 2003; and 

Reinisch and Huang, 2000]. Their decomposition of the 

bottomside is very complex and was designed to be 

flexible enough to accommodate the modeling of the 

bottomside globally, where different geographic locations 

demonstrate vastly different bottomside behaviour. 
 

Each of the five bottomside regions is modeled using the 

same layer function as the F2-region but with separate 

modified height terms that are dependent of hmF1 and 

hmE. In this way, the IRI bottomside is essentially a 

piece-wise continuous function with equal densities 

forced at the boundary of each region. This piece-wise 

parametrization of the bottomside acts as a somewhat 

severe limitation of the IRI bottomside, as the vertical 

gradient of the electron density at the boundary of each 

region is not continuous despite the electron density itself 

being continuous. This poses significant challenges for 

users interested in ray tracing, as such applications require 

that the electron density profile has a continuous 

derivative.  
 

hmE, the height of the E-region peak, in the IRI is taken 

as a constant value of 105km. For the altitude of the F1-

region peak, the IRI simply uses the altitude at which their 

F2-region profile reaches the density corresponding to 

their modelled foF1. 
 

Because of the intermittent occurrence of the F1-region, 

the occurrence model of Scotto et al. [1998] is used to 

determine when to include the F1-layer/ledge. This trigger 

can lead to discontinuous spatial variations in electron 

density in the transition between regions with and without 

an F1-layer. If an F1-region is determined to be present, 

the electron density in the region of the F1-layer/ledge is 

given by the same function as the F2 bottomside, but with 

a modified height term given in Bilitza [2003].  
 

2.2 Current Standards: NeQuick 
 

The NeQuick bottomside is given as the sum of three 

semi-Epstein layer functions, each with different topside 

and bottomside scale thicknesses. The NeQuick uses the 

foF1 model of Leitinger et al. [2005] for its foF1, which 

parameterizes foF1 as a piece-wise function of foE. foE in 

the NeQuick is then modeled using the work of Titheridge 

[1996]. hmE in the NeQuick is taken as a constant value 

of 120km and hmF1 is set as the average of hmF2 and 

hmE.  
 

Unlike the IRI, the NeQuick bottomside model has a 

continuous vertical gradient profile, despite using 

discontinuous thickness changes at the layer peaks. This 

continuity is guaranteed, despite the thickness changes at 

each layer peak, because the derivative is zero at the peak 



by construction (a property of a semi-Epstein layer 

function), regardless of the thickness. This gives the 

NeQuick an advantage over the IRI when one wishes to 

use the model for HF ray tracing 
 

3. E-CHAIM 
 

For the bottomside portion of the E-CHAIM model, we 

make use of global ionosonde profiles from the Global 

Ionosonde Radio Observatory (GIRO) and the Canadian 

High Arctic Ionospheric Network (CHAIN). We are here 

restricted to a substantially smaller dataset than what was 

available for the NmF2 and hmF2 portions of the model 

for a number of reasons, as many of the older datasets did 

not invert electron density profiles from their data, instead 

scaling only foF2, MUF(3000)F2, and foE. In addition to 

this, the bottomside electron density profile, as a whole, is 

quite sensitive to scaling errors; thus, in addition to the 

quality control measures used for the hmF2 portion of the 

model, described in Themens et al. [2017], we have 

further restricted the dataset to data that has an ARTIST 

quality control score of 90 or greater and to data that has 

been manually scaled. This quality control has resulted in 

a dataset of just over 6.2 million profiles. The stations 

used in constructing this dataset are represented in Figure 

1.   

 
Figure 1. A map of the ionosonde stations used for the 

development of the bottomside portion of the E-CHAIM 

model.  
 

As one will note, the dataset has significant holes, 

particularly over central Canada and over the Arctic 

Ocean. To deal with this issue, the bottomside portion of 

our model will be constructed in a magnetic latitude and 

magnetic local time coordinate system. In this way, we 

essentially “fill in” these data gaps by allowing each 

station to constrain the model along a zonal line at its 

magnetic latitude. Using such a coordinate system reduces 

the model’s capability to reproduce geographically-

dependent structures, such as non-migrating tides, but this 

is an unfortunate necessary compromise, which has been 

used in the past for the IRI’s current hmF2 model 

[Altadill et al., 2009]. 
 

4. Bottomside Function 
 

To define the shape of the bottomside electron density 

profile within E-CHAIM, we have chosen to create our 

own, unique, formulation. Unlike the data used in creating 

the IRI and NeQuick, we are making use of ionosonde 

data that does not explicitly provide profile parameters 

and instead simply directly provides the electron density 

profile. This makes us somewhat less confined to the use 

of the traditional method of using the F1-layer/ledge and 

E-region densities as anchor points for our profile 

function. In our formulation, we model the bottomside as 

a single semi-Epstein layer with an altitude-varying scale 

height. The functions used to define this scale height are 

themselves taken as a sum of semi-Epstein layers given 

below. 
 

𝑁(ℎ) = sech2 𝑧 =
4 ∙ 𝑁𝑚𝐹2

(1 + exp(𝑧))2
exp(𝑧) (1) 

 

𝑧 =
ℎ − ℎ𝑚𝐹2

𝐻
(2) 

 

𝐻′ = 𝐻𝐹2 + 𝐻𝐹1 [sech2 (
ℎ − ℎ𝑚𝐹1

30.0
)] +

𝐻𝐸 [sech2 (
ℎ − ℎ𝑚𝐸

60.0
)] (3)

 

 

𝐻 = 𝐻′ ∙ [
1

1 + exp (
ℎ𝑚𝐸 − 25.0 − ℎ

10.0
)

] (4) 

 

where 𝐻𝐹2 , 𝐻𝐹1 , and 𝐻𝐸  are amplitude terms, 𝐻′  is an 

intermediate scale height function, and 𝐻 is the true scale 

height used by the model. You will note that the scale 

height function of Equation 3 is composed of two semi-

Epstein layer functions, centered at hmF1 and hmE, with 

predefined thicknesses. These thicknesses were 

determined by optimizing RMS fitting error against a set 

of test thickness values. In Equation 4, we arrive at the 

true scale height, where the scale height function of 

Equation 3 is multiplied by a sigmoid function. This 

sigmoid function acts to suppress the scale height below 

the E-region, ensuring that the electron density tends to 

zero at the model’s lower boundary.  
 

This parameterization requires that we model hmF1, hmE, 

𝐻𝐹2, 𝐻𝐹1, and 𝐻𝐸 .  
 

5. hmE and hmF1 
 

We have chosen to independently develop models for 

hmE and hmF1. Beginning with hmE, we attempted to fit 

our dataset of ionosonde-derived hmE values to a model 

similar to that done for E-CHAIM’s topside thickness. In 

so doing, we found RMS fitting errors hardly 0.5km 

improved over the standard deviation of the input data. 

This implies that even the most sophisticated modeling 

approach would only amount to a marginal improvement 

over simply using the average of the input data (102.19 ± 

5.02 km). Based on this result, we have decided to simply 

use this average value in place of an explicit model for 

hmE. It is interesting here to note that both the IRI and 

NeQuick use constant values for hmE in their model; 

however, while the IRI’s value of 105 km falls within the 

error range of the average derived here, the NeQuick’s 

value of 120 km is substantially higher than the average 

by several standard deviations. This result may suggest a 

need to re-visit the NeQuick’s choice of hmE.  

 



Unlike hmE, hmF1 demonstrated notable coherent 

variability, such that a model could provide a substantial 

improvement over the mean (175.31 ± 15.01km). For 

hmF1, we have used a similar framework to that used for 

the topside thickness. The full parameterization is given 

as 

ℎ𝑚𝐹1 = 𝐺 + ∑ ∑ 𝐹1 [𝐴𝑙𝑚 cos (
𝜋𝑚

180
𝑀𝐿𝑇) + 𝐵𝑙𝑚 sin (

𝜋𝑚

180
𝑀𝐿𝑇)]

min(𝑙,𝑀)

𝑚=0

𝐿

𝑙=0

𝑃𝑙𝑚(𝜂)(5) 

 

𝐶𝑙𝑚 , 𝐷𝑙𝑚 = ∑ 𝛼𝑙𝑚
𝑐 cos (

2𝜋𝑐 ∙ 𝐷𝑜𝑌

365.25
) + 𝛽𝑙𝑚

𝑐

3

𝑐=1

sin (
2𝜋𝑐 ∙ 𝐷𝑜𝑌

365.25
) (6) 

 

G = 𝑎1 cos(𝜒) + 𝑎2 sin(𝜒) + 𝑎3𝜒 + 𝑎4𝜒2 + 𝑎5𝜒3 

+ sin(𝜒) ∙ (𝑎6 sin 𝜃 + 𝑎7cos 𝜃) 

+ cos(𝜒) ∙ (𝑎8 sin 𝜃 + 𝑎9cos 𝜃) 

+𝑎10 sin 𝜃 + 𝑎11cos 𝜃 

+𝐴𝐸′(𝑎12 sin 𝜑 + 𝑎13cos 𝜑) (7) 
 

where F1 is 81-day smoothed F10.7 flux, F2 is integrated 

AE index, DoY is the day of year, 𝜃  is the dipole tilt 

angle, 𝜒 is the solar zenith angle, a1-12, 𝛼𝑙𝑚
𝑐 , and 𝛽𝑙𝑚

𝑐  are 

fitting coefficients, and 𝜂 is the colatitude scaled to a 45o 

cap, described in Themens et al. [2017]. 
 

To assess the validity of the E-CHAIM hmF1 model fit, 

we present a comparison between hmF1 derived from E-

CHAIM, the NeQuick parameterization (using measured 

hmF2), and the “traditional” hmF1 parameterization 

[Bilitza, 1990], currently used by ICEPAC, which 

parameterizes hmF1 as a linear function of solar zenith 

angle. A comparison of the median behaviour of hmF2 

from these various models is presented in Figure 2. To 

illustrate the best possible representation based solely on 

solar zenith angle, we have also included a best fit to a 

quadratic function in solar zenith angle. 

 

 
Figure 2. Plot of mean hmF1 behaviour vs. AACGM 

latitude (top left), AACGM local time (top right), 

integrated AE index (bottom left), and solar zenith angle 

(bottom right). 
 

Examining first the patterns with respect to solar zenith 

angle, we see that the E-CHAIM and quadratic model fit 

the dataset’s solar zenith angle behaviour very well. Also 

evident is the apparent inability of a linear 

parameterization in solar zenith angle to represent the 

behaviour of hmF1, which appears to be largely 

unchanged except at large solar zenith angles. The 

NeQuick appears to perform well when the sun is low to 

the horizon but poorly during mid-day. In terms of 

latitude, the ionosonde data demonstrates a largely linear 

trend with hmF1 increasing toward the geomagnetic pole. 

This pattern is well captured by the E-CHAIM fit. The 

best fitted quadratic model seems to underestimate the 

rate of increase with latitude, while both the NeQuick and 

the “traditional” parameterization are biased upward by 

~8km and ~30km, respectively. In local time E-CHAIM 

and the ionosonde data demonstrate a local minimum at 

local noon and an asymmetric diurnal variation with 

higher morning hmF1 compared to the evening. As for the 

remaining models, the traditional approach appears to 

again be over estimating hmF1 by ~30km and the 

NeQuick model, while performing well at in the morning 

and evening, overestimates hmF1 around local noon. 

Interestingly, we see here that the best fitted solar zenith 

angle curve underestimates the amplitude of the diurnal 

variation of the and performs better during daytime 

periods than during the evening and morning periods, 

likely because of the abundance of daytime day as 

compared to morning and evening data (fit heavily 

weighted toward local noon). The inability of this 

function to capture the diurnal variation of hmF1, 

suggests that hmF1 may have a significant dependence on 

neutral composition behaviour, which may not simply 

follow a solar illumination-driven pattern. Finally, and 

perhaps most interesting, is the observed behaviour with 

respect to integrated AE index. Here we note a sudden 

increase in hmF1 from very quiet periods to more average 

periods with largely linear behaviour thereafter. 

Interestingly, the hmF2 parameterization of the NeQuick 

seems to capture the trend with respect to AE index 

reasonably well if one ignores the slight tendency for an 

upward bias. In fact, if one uses 105km for hmE, in place 

of the NeQuick’s 120km value, we see average AE index 

behaviour comparable to that of the E-CHAIM model. 

This is also true for the latitudinal behaviour of the 

NeQuick’s parameterization. This suggests that hmF2 

may be a good target parameter when attempting to model 

hmF1. It should be noted, however, that we have used 

measured hmF2 here, and thus the CCIR-based hmF2 of 

the NeQuick would not capture such variabilities, as it 

does not include a geomagnetic activity adjustment.  
 

Table 1 RMS errors from each hmF1 modeling method 

tested. 

Method RMS Error (km) 

Mean 15.01 

E-CHAIM 9.47 

NeQuick 17.89 

NeQuick (hmE = 105km) 15.48 

Traditional Model 32.32 

SZA Quadratic Fit 14.43 
 

Overall RMS errors from each method are listed in Table 

1. One will note from this table that the RMS error of the 

          
                  

   

   

   

   

   

   

 
 
 
 
  
 
 
 
  
 
 
 

        
                

   

   

   

   

   

   

   

   

 
 
 
 
  
 
 
 
  
 
 
 

                 
                        

   

   

   

   

   

   

   

 
 
 
 
  
 
 
 
  
 
 
 

            
                            

   

   

   

   

   

 
 
 
 
  
 
 
 
  
 
 
 

    

       

       

      

            



traditional approach is significantly worse than the use of 

a constant mean value for hmF1 and that the NeQuick, 

using 120km for hmE also performs worse than a simple 

mean. In fact, if one used CCIR-derived hmF2 in the 

NeQuick parameterization, it can be presumed that these 

errors might have been much larger, given the errors in 

the IRI/NeQuick hmF2 presented in Themens et al. 

[2014]. Overall, the E-CHAIM fit performs substantially 

better than the mean and the NeQuick. It also performs 

much better than functions that are based solely on solar 

zenith angle. 
 

6. Amplitudes: 𝑯𝑭𝟐, 𝑯𝑭𝟏, and 𝑯𝑬 
 

With the hmE and hmF1 parameterizations completed, we 

then began fitting electron density profiles for the 

amplitude terms of Equation 3. This is done via nonlinear 

least squares with pre-specified values for the heights and 

thicknesses of the scale height layers. Ionosonde inversion 

errors are used to create a diagonalized measurement error 

covariance, the a priori covariances are also diagonalized, 

and all output amplitude values are constrained to be 

greater than zero. Examples of these fits to ionosonde-

derived electron density profiles is provided in Figure 3. 
 

 
Figure 3 Example ionosonde-derived electron density 

profiles at Cambridge Bay (a-c) and corresponding scale 

height profiles (d-e) for three situations: a,d) no E-region 

trace, b,e) no F1-layer/ledge trace, and c,f) a profile with 

all three layers present. d-f) also demonstrate the various 

components of the scale height function.  
 

As you may note, our chosen profile function does an 

excellent job fitting ionosonde-derived electron density 

profiles under a robust set of conditions. That said, there 

are an enormous number of profile functions that will fit 

an electron density profile. The challenge is finding one 

that produces physically consistent parameter variability 

that can be easily fitted to a model. For example, we 

attempted to use a fourth order polynomial to represent 

the scale height in our model; however, multiple attractors 

and the fact that none of the parameters of the fit were tied 

to a physical phenomenon meant that the fitted parameters 

did not exhibit coherent variability that could be easily 

fitted to a model. Our approach, of course, is not without 

some caveats: the various layers will often overlap, 

causing unwanted correlations between the layer 

amplitudes. To rectify this issue, we take a page out of the 

NeQuick’s book by choosing to model the total scale 

height at each peak location instead of the amplitudes of 

each function. This results in modeling the following 
 

𝛾 = 𝐻𝐹2 + 𝐻𝐹1𝑓𝐹1(ℎ𝑚𝐹2) + 𝐻𝐸𝑓𝐸(ℎ𝑚𝐹2) (8) 

𝛽 = 𝐻𝐹2 + 𝐻𝐹1 + 𝐻𝐸𝑓𝐸(ℎ𝑚𝐹1) (9) 

𝛼 = 𝐻𝐹2 + 𝐻𝐸 + 𝐻𝐹1𝑓𝐹1(ℎ𝑚𝐸) (10) 
 

where 𝑓𝐸  and  𝑓𝐹1  are the semi-Epstein layer functions 

without their amplitude terms. Once these parameters are 

modeled, they are converted back into the function 

amplitudes using a simple rearranging of Equations 8-10.  
 

These peak total scale heights will be modeled using the 

same spherical cap harmonic and Fourier expansion as 

that used for hmF1. The results of this fit will be 

presented in the associated presentation.  
 

7. Conclusions 
 

We have here presented the framework used to profile the 

bottomside of the E-CHAIM model. For this purpose, we 

have chosen to use a single semi-Epstein layer function 

with a varying scale thickness, whose coefficients (hmE, 

hmF1, and the amplitudes of the three layer functions) are 

modeled by a spherical cap harmonic and Fourier 

expansion. For hmE, we find that a constant value of 102 

km is sufficient to properly represent the E-region 

altitude, while a more complicated spherical cap harmonic 

and Fourier expansion model of hmF1 shows significant 

improvement over other hmF1 models.   
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