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Abstract 
 

The paper deals with the calculation of transient currents 

and voltages along curved wire structures buried in a 

lossy ground using the generalized Telegrapher’s 

equations. The influence of a lossy half space is taken into 

account by the simplified reflection coefficient arising 

from the modified image theory (MIT). The concept of 

the scattered voltage is computed via boundary element 

formalism provided the current distribution is already 

known. Computational examples are given for the 

transient voltage induced along the grounding grid and 

grounding system for wind turbines (WTs). 

 

1. Introduction 
 

Electromagnetic modeling of buried wire configurations 

has numerous applications, e.g. in the analysis of 

underground cables, or grounding systems [1]–[4]. For 

most of the applications dealing with straight buried wires, 

the transmission line (TL) approach is used (e.g. [3], [5-

8]), primarily in the frequency domain, due to the 

simplicity of the formulation and computational efficiency. 

The TL approach, on the other hand, is mostly limited to 

straight wire structures and fails to account for the radiation 

effects at higher frequencies [3]. 

An alternative is to use the antenna theory (AT or full-

wave) approach, whose main disadvantage is the 

complexity of formulation and high computational cost [3] 

[5]. A possible way to reduce the computational cost is to 

combine TL and AT approaches, a task that has been carried 

out in [2] for the case of straight buried wires. Moreover, it 

is rather important to find a clear theoretical relationship 

between the standard telegrapher's equations and integral 

equations arising from the wire antenna theory including 

the effect of a lossy ground.  

The present work extends the work carried out in [2] to the 

analysis of curved wires buried in a lossy ground [2]. The 

influence of a lossy ground is taken into account via the 

simplified reflection coefficient arising from the Modified 

Image Theory (MIT) appearing within the related Green’s 

function. The application of the generalized telegrapher’s 

equations for buried wires is of particular importance in the 

transient analysis of grounding systems as the concept of 

scattered voltage is included within the formulation which 

is not the case in standard antenna theory. This concept 

allows a straightforward determination of the transient 

voltage which is necessary for the evaluation of input 

impedance and step-voltage at the ground surface.  

Some illustrative computational examples pertaining to 

the transient voltage induced along realistic grounding 

system configurations are presented in the paper. 

 

2. Formulation 
 

The generalized telegrapher's equations for curved wire 

configurations can be derived by extending the simple case 

of a straight buried wire. A straight thin wire of length L 

and radius a buried in a lossy ground at depth d, see Figure 

1, is considered. 
 

 
 

Figure 1. Straight thin wire buried in a lossy ground 

 

The buried wire is excited either by a plane wave 

(underground cable), or by an equivalent current source 

(grounding system). The current and voltage induced 

along the wire are obtained by solving the generalized 

telegrapher’s equations derived in [2]: 
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where I(x’) is the current distribution along the wire, and 

g(x, x’) stands for the corresponding Green’s function. 

The rigorous form of the Green’s function is expressed in 

terms of the Sommerfeld integrals whose evaluation is 

rather time consuming [5]. An approximate approach is to 

use the Fresnel reflection coefficient [2] leading to the 

following total Green’s function 
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and gi(x, x’) arises from the image theory and is given by 
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In (3) and (4), Ro and Ri denote the corresponding distance 

from the source to the observation point, respectively, and 

the propagation constant of the lossy ground is given by 
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The corresponding Fresnel reflection is of the form [5] 
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which accounts for the presence of a lossy half-space. 

The complex permittivity of the ground is given by 
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and argument θ is defined as: 
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An alternative is to use the simplified reflection 

coefficient arising from modified image theory: 
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The next step is to extend the formulation (1) to the 

case of an arbitrarily-shaped wire. The curved wire with 

the corresponding image is shown in Fig 2.  

 
Figure 2. Buried wire of arbitrary shape and its image 

 

Assuming the potential in the remote soil to be zero and 

by using straightforward mathematical manipulations, the 

following expression for the voltage between any point on 

the wire ( r ) and remote soil is obtained: 
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in which the geometrical parameters are defined in Fig. 2. 

Integral expression (10) represents the 2
nd

 telegrapher’s 

equation for curved wires. Note that r stands for the 

observation point position, while s’ and s* are related to 

source variables over the buried wire and image in the air, 

respectively. Now the extension to the multiconductor 

case is straightforward 
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where Nw denotes the total number of wires. 

The 1
st
 generalized telegrapher’s equation for curved 

wires could be derived in a similar manner. Once the 

current distribution along the given wire configuration is 

determined by solving the corresponding integro-

differential equation, it is possible to evaluate the 

scattered voltage (10) or (11), respectively. The current 

 e

nI   over the n-th segment is expressed via basis 

functions fni, and complex coefficients Ini. Featuring the 

use of isoparametric elements, it follows [4] 

     
1

( )
n

Te

n ni ni n n
i

I I f = f I 


                             (12) 

where n is the number of local nodes per element. 

The boundary element formalism applied to (11) yields  
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The transient voltage is obtained by applying the Inverse 

Fourier Transform (IFT) to (13). 

 

 3. Computational examples 
 

The first set of numerical results deals with a grounding 

system composed of 60m x 60m grid (10m x 10m square 

meshes), with conductor radius a=0.007m, Fig 3. The grid 

is buried at depth d=0.5m in a lossy ground with a 

conductivity σ=1mS/m and a relative permittivity εr=10.  

 

Figure 3. Geometry of a grounding grid 

The grounding grid is excited at its center by a double 

exponential current source    

μ0, ε0 

 μ0, ε, σ 
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where: 1.0167I kA , 10.0142 s   and 15.073 s   . 

Figure 4 shows the spatial distribution of the voltage 

induced along the grounding grid. for the case of center 

injection at various time instants. 

 
 

 

 

 

Figure 4. The voltage distribution along the grounding 

grid (center injection) at various instants of time 

The obtained numerical results are in a good agreement 

with the results published in [1].  

The next example deals with a typical grounding system 

of a wind turbine (WT), shown in Fig. 5. The WT 

grounding system, composed of 2 copper rings with radii 

3.25m and 6.8m (buried at depths 5cm and 55cm) is 

placed in a homogenous soil of conductivity =0.8 mS/m 

and a relative dielectric constant εr=9. 

 

Figure 5.  Typical configuration of WT grounding system  

 

Note that a rectangular grounding grid of wire length 9.6 

m buried at depth 2 m is located inside bigger ring. 

Horizontal wires (Fe/Zn 30x4mm) of length 28m, 29m 

and 9m are placed radially, as depicted in Fig. 5. The WT 

is excited by the lightning current given by the double 

exponential function (13) with: I0=1.1043A, 

α=0.07924∙10
6
s

-1
, β=4.0011∙10

6
 s

-1
, representing a 1/10 s 

pulse, as shown in Fig 6. 

 
Figure 6.  WT excited by a lightning return-stroke pulse 

 

The time-domain waveform of the lightning return-stroke 

current pulse is shown in Figure 7.  

 
Figure 7. The lightning return-stroke current pulse 
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Figure 8 shows the spatial distribution of the voltage at 

the ground surface above the WT grounding system. 

 

 

 
 

 

 

Figure 8. The voltage distribution induced along the WT 

grounding system (center injection) at various time 

instants. 

4. Concluding remarks 
 

A generalized form of the frequency domain telegrapher’s 

equations for electromagnetic field coupling to curved 

wires buried in a lossy ground is presented in this paper. 

Once the current distribution along the grounding system 

is determined, the transient voltage along the grounding 

grid is calculated by integrating the current distribution 

over the grounding structure. The transient voltage along 

the grounding structures is computed by applying the 

Inverse Fourier Transform (IFT). 

Future work will deal with the generalized telegrapher’s 

equations for buried wires of arbitrary shape using the 

rigorous Sommerfeld integral approach to account for the 

presence of a lossy half-space. 
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