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Abstract 
 

Ring-resonator-based balanced wide-band bandpass filters 

with sharp-rejection differential-mode passband and 

broad-band common-mode suppression are reported in 

this paper. Both half- and full-wavelength ring resonators 

are used in these filtering devices to realize wide- and 

ultra-wideband bandwidths for the differential-mode 

transmission band. Furthermore, they exhibit a common-

mode-suppression bandwidth that can cover up to three 

octaves and a quasi-elliptic-type differential-mode 

passband by means of transmission-zero generation. Two 

different topologies of wide-band balanced bandpass 

filters are discussed and verified through experimental 3-

GHz microstrip prototypes.  

 

 

1. Introduction 
 

With the rapid development of high-data-rate 4/5-

Generation (4/5G) microwave communication systems, 

more and more attention has been recently detected in the 

design of wide-band RF circuits for their front ends [1]. In 

this trend, differential-mode or balanced broad-band 

bandpass filters may be very required due to their 

potential for environmental-noise suppression, as well as 

higher dynamic range and increased robustness to 

electromagnetic interference [2, 3]. It is the author’s 

opinion that main desired features for these devices are as 

follows: (i) simple balanced-circuit structures, (ii) high 

selectivity and wide-band harmonic suppression for the 

differential-mode transfer function, and (iii) broad-band 

common-mode mitigation (going from DC up to even 

several octaves) [4]. 

In this article, an overview of some author’s recently-

developed ring-resonator-based wide-band balanced 

bandpass filter architectures are described. In these 

circuits, different techniques to realize common-mode 

mitigation throughout ultra-broad spectral ranges are 

exploited [5-7]. These balanced bandpass filters exhibit 

several desired features, including simple circuit design, 

compact size, enhanced out-of-band differential-mode 

attenuation and sharp-rejection capabilities, wide-band 

common-mode suppression, and ease of integration with 

other circuits and/or antennas. Proof-of-concept 

microstrip prototypes of these wide-band differential- 
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Figure 1. (a) Circuit used to obtain the mixed–mode S-

parameters in balanced devices. (b) RF differential two-

port or single-ended four-port circuit. 

mode bandpass filters are also shown and compared with 

the state-of-the-art. 

 

 

2. Wide-band Balanced Bandpass Filters with 

Broad-band Common-Mode Suppression 
   

2.1. Mixed-Mode S-Parameters 
 

In microwave circuits, mixed-mode S-parameters 

include differential-, common-, and cross-mode signals. 

Cross-mode signals occur when there are imbalances in 

microwave circuits and are mostly due to manufacturing 

imperfections. As a result, the signal energy is converted 

from differential to common mode or from common to 

differential mode [3]. To illustrate this concept, a 4×4 

matrix of sixteen standard S-parameters representing a 

four-port balanced circuit is transformed to a set of four 

2×2 mixed-mode S-parameter submatrices as in (1). Here, 

the four 2×2 submatrixes represent four possible mode 

circuit responses as follows: differential-mode input to 

differential-mode output, differential-mode input to 

common-mode output, common-mode input to 

differential-mode output, and common-mode input to 

common-mode output.  
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The circuit used to obtain the mixed-mode S-

parameters of balanced devices is shown in Fig. 1(a) and 

(b). The details of the transformation proof can be found 

in [2-4]. The transformation from standard S-parameters 

to mixed-mode S-parameters is given in (2). Using the 

relationships in (2), the transformation of mixed-mode S-

parameters (Smm) from standard S-parameters (Sstd) can be 
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Figure 2. Balanced filter using half-wavelength ring 

resonators. (a) Circuit schematic. (b) Differential-mode 

equivalent. (c) Common-mode equivalent. 

 

derived. The resulting mixed-mode submatrices are given 

in (3)-(6). For a measurement system with no noise, no 

data inaccuracies, and no calibration inaccuracies, the 

linear descriptions of the circuit behavior must be 

equivalent through these mathematical transformations [2]. 

This is a basic mathematical requirement for linear matrix 

transformations. Next, examples of planar ring-resonator-

based wide-band balanced bandpass filters are presented. 
 

1
,

1 1 0 0

0 0 1 11

2 1 1 0 0

0 0 1 1

(2)mm stdS MS M M


 
 
 
 
 
 
 




 

        
11 11 12 21 22 12 13 14 23 24

21 31 32 41 42 22 33 34 43 44

( ) ( )1

2 ( ) ( )

dd dd
dd

dd dd

S S S S S S S S S S
S

S S S S S S S S S S

       


       

 
  

      (3) 

11 11 12 21 22 12 13 14 23 24

21 31 32 41 42 22 33 34 43 44

( ) ( )1

2 ( ) ( )

dc dc
dc

dc dc

S S S S S S S S S S
S

S S S S S S S S S S

       


       

 
  

    (4) 

11 11 12 21 22 12 13 14 23 24

21 31 32 41 42 22 33 34 43 44

( ) ( )1

2 ( ) ( )

cd cd
cd

cd cd

S S S S S S S S S S
S

S S S S S S S S S S

       


       

 
       

(5) 

11 11 12 21 22 12 13 14 23 24

21 31 32 41 42 22 33 34 43 44

( ) ( )1

2 ( ) ( )

cc cc
cc

cc cc

S S S S S S S S S S
S

S S S S S S S S S S

       


       

 
     

(6) 

 

2.2. Microstrip Wide-Band Balanced Filter Using Half-

Wavelength Ring Resonators 
 

  Fig. 2(a) shows the wide-band balanced filter using half-

wavelength ring resonators with four open-ended stubs [5]. 

When the differential-mode signals are excited from ports 

1 and 1' in Fig. 2(a), a virtual short-circuit appears along 

the half-wavelength ring resonator (see Fig. 2(b)). Thus, a 

bandpass-type response is realized through the resulting 

open/short-ended coupled lines [5]. Two transmission 

zeros at ftz1= 0.5f0 and ftz2= 1.5f0 (f0 is the center frequency) 

are also created by the open-ended stubs to improve the 

selectivity and harmonic rejection in the differential mode. 
 

    
                                          (a) 

        
                                          (b) 

Figure 3. Simulated and measured mixed-mode S-

parameters of the balanced filter using half-wavelength 

ring resonators. (a) Differential mode. (b) Common mode.  
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(c) 

Figure 4. Balanced filter using full-wavelength ring 

resonators. (a) Circuit schematic. (b) Differential-mode 

equivalent. (c) Common-mode equivalent. 
 

Moreover, the in-band balance can also be adjusted by 

means of the characteristic impedance Z1. On the other 

hand, when the common-mode signals are excited from 

ports 1 and 1', a virtual open appears along the center of 

the half-wavelength ring resonator (see Fig. 2(c)). Thus, a 

resonant-type all-stop performance is realized [4].  

Fig. 3(a)-(b) show the measured and simulated mixed-

mode S-parameters of a 3-GHz prototype of the wideband 

balanced bandpass filter with half-wavelength ring 

resonators. For the differential mode, the main measured 

characteristics are as follows: five transmission zeros at 

DC, 0.5 GHz, 1.6 GHz, 4.57 GHz, and 5.9 GHz, 3-dB 

fractional bandwidth of 79% (1.85-4.23-GHz range), 

minimum in-band insertion loss of 1.35 dB, in-band 

return loss higher than 10 dB from 2 GHz to 4.05 GHz, 

and 25-dB upper stopband from 4.4 GHz to 7.8 GHz (i.e., 

2.6f0). For the common mode, the minimum rejection 

level of the stopband is 13 dB from DC to 8 GHz (i.e., 

2.67f0) and of 10 dB from DC to 15 GHz (i.e., 5f0). 

 

2.2. Microstrip Wideband Balanced Filter Using Full-

Wavelength Ring Resonators 
 

The ideal circuit schematic of the balanced filter using 

full-wavelength ring resonators is shown in Fig. 4(a), and 

its equivalent half circuits for differential/common-mode 

operation are shown in Fig. 4(b) and (c). Through the 

study of this circuit [2], its close-to-differential-passband 

transmission-zero positions can be derived in terms of 

electrical length θ to be as follows: 
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  These transmission zeros allow to increase the selectivity 

of the differential-mode transfer function. Moreover, the 

differential-mode-passband width and the common-mode 

suppression increases as the sum of Ze1 and Zo1 is higher. 

Note that these are particular characteristics for this type 

of filter with regard to other prior-art ones as those in [8-

14]. 

The measured and simulated mixed-mode S-parameters 

of a 3-GHz microstrip demonstrator of the broad-band 

balanced bandpass filter with full-wavelength ring 

resonators are compared in Fig 5. A fairly-close 

agreement between the simulation and the experiment is 

observed that serves to validate this balanced filter 

concept. For the differential mode, the main measured 

characteristics are as follows: five transmission zeros at 

1.91 GHz, 2.5 GHz, 3.58 GHz, 3.71 GHz, and 4.37 GHz, 

3-dB fractional bandwidth of 21.9% ((2.76-3.44-GHz 

range), minimum in-band insertion loss of 2.2 dB, 

minimum in-band return loss of 12.5 dB, and 20-dB upper 

stopband from 3.54 GHz to 9.1 GHz (i.e., 2.94f0). For the 

common-mode operation, the minimum rejection level of 

the stopband is 20 dB from DC to 16 GHz (i.e., 5.16f0).  

 

 
                                              (a)                     

           
    (b) 

Figure 5. Simulated and measured mixed-mode S-

parameters of the balanced filter using full-wavelength 

ring resonators. (a) Differential mode. (b) Common mode. 

 

3. Conclusions 

 
This article has presented an overview of recently-

proposed wide-band balanced bandpass filters based on 

half/full-wavelength ring resonators. As demonstrated in 

Table I where a comparison with some prior-art broad-

band balanced bandpass filters is provided, these half/full-

wavelength-ring-resonator-based balanced filters exhibit 

higher order and number of transmission zeros for the 

differential mode. Furthermore, extended upper stopband 

for the differential mode and very-broad common-mode 

suppression up to three and five octaves are attained. 

Based on these principles, more multi-functional balanced 

circuits, such as balanced couplers, balanced crossovers, 

and balanced filtering baluns for fully-balanced 

microwave circuits and systems (see [15-18] for some 

past examples) are expected to be developed as future 

research work. 
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Table I Comparisons of measured results of some 

balanced filters. 

  Filter 

Structures 

3-dB 
bandwidth 

(%) 

Transmission 

zeros & order 

Upper 
stopband 

|Sdd21| (dB) 
| Scc21| (dB) 

Ref. 7 12.9% 2 & fifth < -30, 2.9f0 < -25, 3.1f0 

Ref. 8-I 10.5% 3 & third < -30, 2.91f0 < -30, 3.0f0 

Ref. 9 62.5% 0 & third <- 20, 2.32f0 <- 20, 1.7f0 

Ref. 10-I 11.0% 2 & second < -20, 2.52f0 <- 20, 2.1f0 

Ref. 11 123% 2 & fourth < -15, 2.62f0 < -15, 2.6f0 

Ref. 12 10.0% 0 & second < -20, 2.2f0 < -18, 1.5f0 

Ref. 13 115% 0 & third <- 20, 2.21f0 < -15, 2.6f0 

Ref. 14-II 70.7% 2 & fourth < -20, 2.80f0 < -14, 2.8f0 

Ref. 5 79.0% 3 & fourth < -25, 2.60f0 < -13, 1.6f0 

Ref. 6-II 21.9% 5 & sixth < -20, 2.94f0 < -20, 5.2f0 
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