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Abstract

In this contribution the periodic method of moments is ap-
plied to calculate the electromagnetic field that is scattered
by a periodic thin-wire grid if excited by an electromag-
netic plane wave. The formalism is implemented in a pro-
fessional Method of Moment solver and utilizes both an
efficient evaluation formula for necessary summations and
appropriate basis and testing functions to connect different
periodic cells.

1 Introduction

In the context of Electromagnetic Compatibility (EMC) it is
of interest to calculate the electromagnetic field that is scat-
tered by thin-wire grids in order to determine the shielding
effectiveness of such periodic planar structures [1]. Among
the possible numerical approaches the Method of Moments
(MoM) is a suitable one since it allows the accurate mod-
eling of thin-wire structures. In case of periodicity it is
then particularly efficient to employ the so-called periodic
method of moments (PMoM) where periodic Green’s func-
tions are used within the relevant integral equations. An ap-
plication of the PMoM is rather straightforward if the scat-
terers within each periodic cell are isolated and not con-
nected to neighboring cells. This circumstance has been
used in the study of frequency-selective surfaces, for exam-
ple [2]. In view of actual wire meshes it has been pointed
out that connecting adjacent wires of different cells is not
trivial and requires a careful choice of basis functions [3] .
In the following an explicit implementation of the periodic
method of moments is introduced which admits connected
wire elements across different cells by the choice of spe-
cial basis functions. This formalism, which has been im-
plemented in a professional MoM software [4], allows the
efficient calculation of periodic thin-wire meshes.
The outline of this paper is as follows: In Section 2 the gen-
eral structure of scattered fields of periodic thin-wire grids
is reviewed and put in Section 3 into a MoM formulation. In
Section 3 suitable basis and testing functions are introduced
as well. Two numerical examples are provided in Section 4
which demonstrate the usefulness of the presented PMoM
formulation.

2 Scattered fields of periodic thin-wire grids
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Figure 1. Periodic thin-wire array within the xy-plane.
Each unit cell is of dimension Dx and Dy. A unit vector ~p
along each wire, a current districution I(l), and an incident
plane wave with unit propagation vector ~s is indicated as
well.

The starting point of the following consideration is a pe-
riodic arrangement of wires, as shown by an example in
Fig. 1. Each unit cell contains one or several wire segments
which may be connected or disconnected. The array is lo-
cated in the xy-plane and excited by an incident plane wave
with electric field

~E inc(~R) = ~E0 exp
(
− jβ~s ·~R

)
, (1)

polarisation vector ~E0, observation point ~R = (x,y,z)T , unit
propagation vector ~s = (sx,sy,sz)

T , and wave number β =
ω

c = 2π

λ
. Here, c denotes the velocity of light, ω the angular

frequency, and λ the wavelength. Utilizing the reference
current I(l), all currents can be written in the form

Iqm = I(l)exp(− jβ sxqDx)exp(− jβ symDy) (2)

with q and m the index of each element in x- and y-direction,
respectively. To calculate the electromagnetic field gener-
ated by the currents (2) one can follow [5, 2] and first focus
on the magnetic vector potential ~A which is generated by (2)



if Hertzian dipoles are considered as current elements,

d~A(x,y,z) = ~p
dl
4π

∞

∑
q=−∞

∞

∑
m=−∞

Iqm
exp(− jβRqm)

Rqm
, (3)

with
R2

qm = (x−qDx)
2 +(y−mDy)

2 + z2 . (4)

For better convergence it is then useful to apply a two-
dimensional spatial Fourier transformation which leads
to [5]

d~A(x,y,z) = ~p
Idl

2 jβDxDy

∞

∑
nx=−∞

∞

∑
ny=−∞

exp(− jβ~R ·~r±)
rz

(5)

where
~r± = (rx,ry,±rz) for z ≷ 0 , (6)

rx = sx +
nxλ

Dx
, (7)

ry = sy +
nyλ

Dy
, (8)

and

rz =


√

1− r2
x − r2

y for r2
x + r2

y < 1

− j
√

r2
x + r2

y −1 for r2
x + r2

y > 1
. (9)

With ~H =~∇×~A and ~E = 1
jωε

~∇×~H the corresponding elec-
tric and magnetic field can be calculated as

d~H =
Idl

2DxDy

∞
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nx=−∞

∞
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ny=−∞

exp(− jβ~R ·~r±)
rz

~p×~r± (10)

and

d~E = Idl
Z0

2DxDy
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rz

~e± (11)

with the polarization vector

~e± = (~p×~r±)×~r± = (~p ·~r±) ·~r±−~p (12)

for each mode (nx,ny). To calculate the electromagnetic
field for an arbitrary current distribution I(l) the expres-
sions above can be integrated, yielding

~E =
Z0

2DxDy

∞
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exp(− jβ~R ·~r±)
rz

~e±

·
�

I(l) exp( jβ~R ′ ·~r±)dl′ (13)

and

~H =
1

2DxDy
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∞
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rz
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·
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I(l) exp( jβ~R ′ ·~r±)dl′ . (14)

It remains to determine the current I(l).

3 Modelling of periodic thin-wire grids by
the method of moments

To numerically obtain the a priori unknown current I(l) and
by assuming perfect conductivity it is possible to start from
the boundary condition(

~E(I(l))+~E inc
)

tan
= 0 (15)

with ~E inc defined in (1) and ~E(I(l)) given by (13). Intro-
ducing test functions~tm along the wire surface yields

−
�
~tm ·~E(I(l))dl =

�
~tm ·~E incdl . (16)

Expanding the current in terms of basis functions fn with
unknown amplitudes In according to

I(l)≈
N

∑
n=1

fnIn (17)

leads to

−
N

∑
n=1

In

�
~tm ·~E( fn)dl =

�
~tm ·~E incdl . (18)

This implies the linear system of equations

Z · i = u (19)

where the unknowns In constitute the vector i. The matrix Z
has elements

Zmn =−
�
~tm ·~E( fn)dl (20)

and the entries of u are given by

um =

�
~tm ·~E incdl . (21)

The remaining tasks are to define appropriate basis and
test functions and to efficiently evaluate the matrix ele-
ments Zmn.

In the MoM formulation of the CONCEPT-II software, var-
ious sets of basis and test functions are implemented [4].
In the current context it is beneficial to use triangular ba-
sis functions fn and constant test functions~tn. The constant
test functions are defined between the centers of adjacent
wire segments and have been introduced in [6], while the
linear triangular basis functions are well-known and of the
generic form

fn =

{
p for a segment n
1− p for a segment n+1

(22)

with a parameter p. In Fig. 2 these functions are sketched
for a straight wire element.

With the choice of constant test functions~tm and the expres-
sion (13) for the electric field, the matrix elements (20) can
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Figure 2. Straight wire element, subdivided into segments
of length ∆l. Counting from the left, the second triangular
basis function f2 is shown. The fourth test function~t4 is
shown as well. It is defined at the surface of the wire with
radius ra.

explicitly be written as

Zmn =−
Z0

2DxDy

Nx

∑
nx=−Nx

Ny

∑
ny=−Ny

~tm ·~e±
rz

·
�

exp(− jβ~R ·~r±)dl
�

fn(l′) exp( jβ~R ′ ·~r±)dl′ . (23)

That is, for each combination (nx,ny) two integrals need to
be evaluated. Fortunately, the integrals can be evaluated an-
alytically since they only contain exponential functions or
the product of an exponential function and a linear function.
This considerably reduces the effort of explicitly evaluat-
ing (23).

More general wire configurations can be treated by the
same pattern, that is, by defining triangular basis func-
tions, constant test functions, and an analytical evaluation
of the resulting integrals for the calculation of the matrix
elements Zmn. Without explicitly going into the details, the
following figures indicate appropriate definitions: In Fig. 3
it is shown how to connect different straight wire elements,
that are not necessarily in parallel, by overlapping basis
functions. To connect wire elements across different cells
of a periodic wire array, half-triangular basis functions are
introduced, as shown in Fig. 4.
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Figure 3. The upper part a) of the figure repeats the usual
choice of triangular basis functions for a straight wire ele-
ment. In the lower part b) of the figure two different wire
elements are indicated by a solid and a dashed line, respec-
tively. In contrast to the figure, these wire elements not nec-
essarily need to be in parallel. Now overlapping triangular
basis functions of each wire element extend to a neighbor-
ing wire element.
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Figure 4. Definition of basis functions and test functions
to connect wire elements across different cells of a periodic
wire arrangement.

4 Sample calculations and numerical results

The described formulas and procedures have been imple-
mented in the CONCEPT-II software which can be oper-
ated by a convenient graphical user interface [4]. Results
are illustrated by the following two examples:
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Figure 5. Definition of a unit cell which contains four wire
elements that form a symmetric cross.

In Fig. 5 a unit cell is displayed which defines a periodic
arrangement of symmetric crosses. This arrangement is
excited by a plane wave with ~s = (0,5;0,5;0,707)T and
~E0 = (0,707;−0,707;0)T V/m at a frequency of 1 GHz.
The wire radii are ra = 1 mm and each of the four wire ele-
ments has length l = 0,05 m. As a result, Fig. 6 shows the
absolute value of the electric field, calculated at a distance
z = 1 cm behind the array by both the proposed PMoM
and the usual MoM applied to a finite 27×27 array as an
approximation of an array of infinite extent. The results
obtained by the different methods are in good agreement
and validate the PMoM implementation. Of course, the nu-
merical advantages of the PMoM become more and more
apparent for electrically small mesh sizes which require a
corresponding fine discretisation.

As a second example, Fig. 7 defines a periodic, rect-
angular wire mesh. A plane wave perpendicularly im-
pinges on the wire mesh with polarization vector ~E0 =
(0,707;0,707,0)V/m. The resulting electric and magnetic
fields are evaluated at a distance of 1 cm behind the wire
mesh to calculate the frequency dependency of the electric
and magnetic shielding effectiveness, as shown in Fig. 7.
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Figure 6. Absolute value of the electric field, calculated at
a distance z = 1 cm behind the periodic array of symmetric
wire crosses.
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Figure 7. Definition of a unit cell which leads to a peri-
odic wire mesh, excited by a plane wave. The unit cell is
quadratic and of dimensions Dx = Dy = 0.05 m.

Figure 8. Electric and magnetic shielding effectiveness,
calculated for the wire mesh defined by the unit cell of
Fig. 7.

5 Acknowledgements

This research was supported in part by the German
Research Foundation (Deutsche Forschungsgemeinschaft,
DFG).

References

[1] S. Celozzi: Electromagnetic Shielding, (Wiley-IEEE
Press, New York, 2008).

[2] J. Blackburn and L. R. Arnaut: “Numerical conver-
gence in periodic method of moments analysis of
frequency-selective surfaces based on wire elements”,
IEEE Transactions on Antennas and Propagation,
vol. 53, (October 2005), pp. 3308–3315.

[3] S.E. Bayer Keskin and A.A. Ergin: “Continuity of
currents across neighboring cells in PMM analysis of
thin-wire grids”, Turkish Journal of Electrical Engi-
neering & Computer Sciences, vol. 22, (2014), 582–
587.

[4] Technische Universität Hamburg-Harburg.
CONCEPT-II. [Online]. Available:
http://www.tet.tuhh.de/concept/ .

[5] B. Munk and G. Burrell: “Plane-wave expansion for
arrays of arbitrarily oriented piecewise linear elements
and its application in determining the impedance of
a single linear antenna in a lossy half-space”, IEEE
Transactions on Antennas and Propagation, vol. 27,
(May 1979), pp. 331–343.

[6] T. Mader: “Berechnung elektromagnetischer Felder-
scheinungen in abschnittsweise homogenen Medien
mit Oberflächenstromsimulation”, (in german) PhD
thesis, (Hamburg University of Technology, 1992).


