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Abstract 
 

The orthogonality sampling method has been 
recently introduced in inverse scattering literature as a way 
to retrieve morphological properties of unknown targets. 
Both the simplicity and the possibility of being exploited 
also for a single incidence make this method more 
appealing than other qualitative methods. However, 
notwithstanding these interesting features, no physical 
interpretation is attributed to the method. For this reason, 
in this contribution we firstly attempt to formulate a 
physical interpretation of the method, in order to take full 
advantage of its flexibility and to fully understand its 
limitations. 
 
1. Introduction 
 

Qualitative methods aim at recovering presence, 
position and shape of the unknown targets by just 
processing the measurements of the fields which they 
scatter if illuminated by means of some given incident 
fields. Usually, they achieve the aforementioned 
information in a simple and effective way as they partially 
avoid the difficulties related to the solution of the 
underlying inverse scattering problem. However, while 
avoiding the difficulties related to non-linearity, they give 
up to the possibility to retrieve the electromagnetic 
properties of the scatterers.  

Many different strategies have been developed in 
literature, among them it is worth to mention the multiple 
signal classification, the decomposition of time reversal 
operator, the linear sampling method (LSM), the 
factorization method (FM) and, finally, the orthogonality 
sampling method (OSM) [1-4]. Another promising and 
recently introduced approach based on equivalence 
principles and Compressive Sensing is described in [5]. 

The OSM shows some similarity with respect to 
both the LSM and the FM. In fact, in the OSM the scenario 
under investigation is sampled into an arbitrary grid of 
points and an indicator function, whose behavior provides 
the support information, is computed over this grid. 
However, OSM exhibits a significant robustness to noise 
as the indicator function is simply computed as the 
modulus of the scalar product between the measurements 
of the far field pattern and a test function, without no need 
of regularization technique [4].  

Moreover, the OSM is more flexible than the 
LSM and the FM, which require data to be acquired under 
a multi-view multi-static configuration, as its application is 
possible also for single-view, multifrequency, multi-view, 
and a combination of them [4].  

Due to its relevance and straightforwardness, the 
approach has been recently extended to the case of near-
field measurements performed on a circle enclosing the 
scatterers [6]. Nevertheless, the physical understanding of 
the basis of the method, its limitations (in term of 
electromagnetic properties and sizes of treatable targets), 
as well as measurement requirements is not yet completely 
understood. A possible attempt can be represented by the 
analysis introduced in [7], where an innovative 
interpretation of the indicator function as the zeroth order 
Fourier coefficient of the far-field pattern of the scattered 
field (in a suitably translated coordinate system) is 
suggested.  

Starting from these considerations, some 
preliminary thoughts on the physics underlying OSM are 
briefly given in this contribution. Throughout the paper we 
consider the canonical 2D scalar problem (TM polarized 
fields) and we assume and drop the time harmonic factor 
𝑒𝑥𝑝{𝑗𝜔𝑡}. 
 
2. The rationale of Orthogonality Sampling 
Method 
 
In the OSM, the key role is played by the reduced scattered 
field 𝐸*+,-, which is defined as scalar product between the 
measurements of the far field pattern and a properly 
defined test function. By following [4], its expression can 
be given as: 
 

𝐸*+,-(𝒓, 𝒓1𝒕, 𝑘4) = 7𝐸*8(𝒓19,𝒓1𝒕, 𝑘4)	𝑒;<=𝒓∙𝒓1?	𝑑Γ
B

 

(1) 
where  

• 𝐸*8(𝒓19, 𝒓𝒕, 𝑘4) is the far-field pattern; 
• 𝒓  is the generic position on an arbitrary grid 

sampling the region under test Ω, where the 
unknown targets are hosted; 

• 𝒓1𝒕 is the unit vector which identifies the angular 
position of the antennas, probing Ω and located on 
a closed curve Γ in the scatterers far-zone; 

•  𝒓19  is the unit vector which identifies the 
measurements angular position; 



• 𝑘4 = 𝜔C𝜇4𝜀4  is the wavenumber in the host 
medium at the frequency 𝜔. 

The scalar product in (1) assays the orthogonality 
relation between the measured far field pattern 𝐸*8 with a 
test function which corresponds to the Green’s function 
(apart from a constant 𝛾 at a fixed frequency): 
 

𝐺48(𝒓19,𝒓, 𝑘4) = 𝛾(𝑘4)	𝑒H;<=𝒓∙𝒓1? 
(2) 

as computed in far-field zone, which is given by plane 
waves back-propagated into the region under test [4]. 
 Once the reduced scattered field is computed by 
means of (1), the OSM indicator function 𝐼(𝒓) is defined 
as [4]: 
 

𝐼(𝒓, 𝑘4) = 7J𝐸*+,-(𝒓, 𝒓1𝒕, 𝑘4)J
K
𝑑

B
𝒓1𝒕 

(3) 
which is expected to exhibit large values for sampling 
points belonging to the targets support and limited value 
outside it. 
 Note that in equations (1) and (3) single frequency 
and multi-view data are considered. In case of 
multifrequency measurements data, the indicator (3) is 
computed by simply integrating over the relevant 
frequency band 𝐵 with 𝑘4 ∈ 𝐵, i.e.: 
 

𝐼NO(𝒓) = 7 7J𝐸*+,-(𝒓,𝒓1𝒕, 𝑘4)J
K
𝑑

B
𝒓1𝒕

P
𝑑𝑘4 

(4) 
 
3. Physical interpretation of the Reduced 
Scattered Field  
 

As recalled in the introduction, the ultimate 
relation between the reduced scattered field and the 
unknown support of the contrast function 𝜒 is still an open 
question. A very first interpretation is to look at (1) as a 
superposition of plane waves back-propagated into the 
region under test [4].  
 An original and more insightful understanding 
can be deduced from an alternative definition of the 
reduced scattered field. This latter can be obtained by 
substituting into (1) the explicit expression of the far-field 
pattern given by [8]: 
 

𝐸*8(𝒓19, 𝒓1𝒕, 𝑘4) = 7𝐺48(𝒓9, 𝒓R, 𝑘4)
S

𝑊(𝒓R, 𝒓1𝒕, 𝑘4)𝑑𝒓R 

(5) 
where 𝑊 = 𝜒𝐸 is the contrast source induced in the region 
under test by the probing antennas, which relates the 
relevant total field 𝐸  to the contrast function 𝜒(𝑟) 	=
	𝜖*(𝑟)/𝜖4 	− 	1 , wherein 𝜖*  and 𝜖4  are the complex 
permittivities of the targets and the background medium, 
respectively.  

By taking advantage from the properties of the Bessel 
functions and from the Funck-Hecke formula, the reduced 
scattered field, at a fixed frequency and for a fixed 

illumination condition, can be interestingly rewritten as the 
convolution product between the contrast source and the 
Bessel function of zero order 𝐽[ [4], i.e.:  
 

𝐸*+,-(𝒓) = 7𝛾𝜆[		𝐽[(𝑘4|𝒓 − 𝒓R|)
S

𝑊(𝒓R)	𝑑𝒓R 

(6) 
where 𝜆[ is a constant related to the Funck-Hecke formula.  

By assuming, without loss of generality, that the 
region under test is a disc and considering that the Fourier 
transform of the Bessel function is given by a distribution 
of Dirac impulses centered on 𝑘4 [9], the reduced scattered 
field can be finally interpreted (but for a constant) as the 
restriction to the circle of radius 𝑘4  of the Fourier 
transform of the contrast sources. Such a circumstance has 
two interesting consequences. 

Firstly, as the contrast sources have the same 
support as the targets, it explains why the OSM indicator 
works as observed. In fact, it is like plotting (a 
superposition of the amplitudes of) the contrast sources.   
 Second, it is known that a further interpretation 
can be inferred in the spectral domain as the radiating 
components are those located on a circle of radius 𝑘4 [10]. 
As a consequence, the reduced scattered field 𝐸*+,- can be 
related to the radiative part of the sources induced by the 
different illuminations. Such a circumstance also allows to 
foresee the expected limitations of OSM, which will be 
related to the presence of significant non-radiating 
component of the contrast sources (which will leave no 
trace into the reduced field) [11].  
 A further Fourier-based interpretation can be 
deduced in the case of Born regime [12], wherein the total 
field can be approximated by just the incident field. Under 
such hypothesis, the convolution product in (6) can be 
rewritten as it follows: 
 

𝐸*+,-(𝒓) = 7𝛾𝜆[		𝐽[(𝑘4|𝒓 − 𝒓R|)
S

𝜒(𝒓R)𝑒H;<=𝒓1^∙𝒓_	𝑑𝒓R 

(7) 
Again, by exploiting the properties of Fourier transform 
and the Bessel functions, the reduced scattered field can be 
related in the spectral domain to the Fourier transform of 
the contrast function in a suitably translated coordinate 
system and limited to the circle of radius 𝑘4.  
 
 More insightful understanding and details as well 
as some interesting performance characteristics will be 
given at the conference. 
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