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Abstract

A scheme to evaluate the physical optics (PO) integral in
closed form over the curved triangular patches is presented.
The PO integral is interpreted as a Radon transform, as a
result the PO integral over the curved triangle surface is
reduced to a line integral. This line is determined as the
intersection of the plane, which is formed by the propaga-
tion direction of the incident wave and the observation di-
rection, and curved triangular surface (integration domain).
The line integral in time domain can be evaluated in closed-
form. A numerical example that shows the validity and ac-
curacy of the scheme is presented.

1 Introduction

The physical optics (PO) approximation involves the eval-
uation of an integral with a highly oscillatory kernel, called
PO integral. The PO integral can be evaluated in closed-
form when the scatterer is modeled with flat triangular
patches [1, 2]. For the curved surfaces, the PO integral is
evaluated approximately [3, 4] or using numerical proce-
dures which might require dense sampling for electrically
large surfaces.

The Radon transform interpretation allows to reduce the di-
mension of the integration domain and to find closed-form
expressions to radiation integrals in time domain, e.g. in
time domain surface [5] and volume integral equations [6]
or PO approximation for different source/observation con-
figurations [2, 7, 8, 9]. In [2], closed-form expression to the
PO integral over a flat triangular surface is evaluated. In
particular, the surface integral is reduced to a line integral
over the intersecting curve of the flat triangular surface and
the plane formed by the incident plane wave’s propagation
and observation directions. This intersection results in a
straight line, hence the PO integral can be easily evaluated
analytically. This idea is then extended to NURBS surfaces
but the intersection and the line integral are determined nu-
merically [7].

In this work, a scheme to evaluate the PO integral, which
is interpreted as a Radon transform, is presented for curved
(quadratic) triangular surfaces in time domain. The inter-
section of the above mentioned plane and curved triangu-
lar surface, that yields the line integral, is determined as a

quadratic curve in terms of the barycentric (area) coordi-
nates [10]. Depending on the triangle, plane and barycen-
tric coordinates used for coordinate transformation, this
curve can be classified as an ellipse, a hyperbola, etc. The
limits of the line integral can be determined using the inter-
section points of the intersecting curve and the curved trian-
gle’s edges. Using a proper coordinate transformation, e.g.
elliptic coordinates for ellipses, the line integral, hence the
PO integral, can be evaluated analytically. Note that the re-
sulting expressions are obtained in exact-form without any
approximation or assumption.

2 Formulation

Let S denote illuminated surface of a perfect electrically
conducting (PEC) scatterer, and S is discretized with curved
triangles S =

⋃
Sn. The scattered electric field [7] due to an

impulsively excited plane wave is

Esca(r, t) =− 1
2πc

∂tδ (t− r/c)
r

∗Esca
rc (k̂s, t), (1)

where ∂t and “ ∗ ” denote time derivative and convolution,
respectively, c is the speed of light, δ (·) is the Dirac delta
function, and Esca

rc (k̂s, t) is the range corrected electric field:

Esca
rc (k̂s, t) = k̂s× k̂s× (k̂i× p̂)×∑

n
hn(t). (2)

Here k̂s is the observation direction, k̂i and p̂ are the propa-
gation direction and polarization of the incident plane wave,
respectively, and hn(t) function is defined as

hn(t) =
∫

Sn

n̂(r′)δ
(

t− 2
c

kr · r′
)

dr′, (3)

where n̂(r) is the outward unit normal vector to Sn, and
k̂r = (k̂i− k̂s)/2. In (3), shape of Sn determines the shape
of the intersecting curve. If Sn is a flat surface, then n̂(r) is
constant, therefore hn(t) in (3) is reduced to integration of
a scalar function, also intersection of the plane and the flat
triangle yields a straight line as shown in [2]. For curved
surfaces, n̂(r) is not constant inside the integration domain
Sn. Hence n̂(r) should be taken into account while evaluat-
ing hn(t).

Assuming that t = t0, k̂r, and ri, i = 1, . . . ,6, nodes of the
curved triangle are known, the steps of the scheme to eval-
uate hn(t) is given as follows:



Step 1: The Dirac delta function in (3) defines a plane at a
given time t = t0, Inserting the barycentric coordinates de-
fined for the curved triangle, into the plane equation results
in a quadratic equation. Type of the quadratic equation de-
termines the type of intersecting curve in the barycentric
coordinate system [10], e.g. hyperbola, ellipse, etc. If there
is no intersection, then hn(t0) = 0. In addition, the intersec-
tion points on the curved triangle can be determined using
the quadratic equation easily. With this step, the PO integral
over curved triangle surface is reduced to a line integral.

Step 2: To parametrize the intersecting curve, a second co-
ordinate transformation is applied, considering the type of
the curve: e.g. elliptic coordinate transformation for ellipse.

Step 3: The parametrized line integral, hence the PO in-
tegral, can be evaluated in closed-form. The intersection
points determined in Step 1 can be used as the limits of the
integration.

Note that for every type of intersection curve there are dif-
ferent closed-form expressions. Since these expressions oc-
cupy large space they are not presented here for brevity.

3 Numerical Example

In this section a numerical example is presented to val-
idate the proposed scheme. A curved triangle on a dis-
cretized unit sphere is chosen, as shown in Fig. 1(a).
The nodes of the curved triangle are r1 = (1,0,0),
r2 = (0.877,−0.291,0.381), r3 = (0.886,−0.464,0), r4 =
(0.968,−0.157,0.194), r5 = (0.903,−0.353,0.194), r6 =
(0.971,−0.239,0). For comparison, the curved triangle is
divided repeatedly into 6 flat and 6 curved triangles, e.g.
the curved triangle shown in Fig. 1(a), divided into 6 flat
triangles shown in Fig. 1(b) and 6 curved triangles (not
shown). Then these 6 curved triangles are subdivided into
6 flat triangles as shown in Fig. 1(c) and so on. Closed-form
expressions given in [2] are applied to these flat triangles.

(a) (b) (c) (d)

Figure 1. Test triangles: (a) the curved triangle, and (b)-(d)
6, 36, 216 subdivided flat triangles.

For the example, the propagation direction of the incident
wave k̂i =−ẑ, observation direction k̂s = ẑ, time step size is
chosen as ∆t = 2.855 ps. In this setup, the plane is directed
to k̂r = ẑ, starts to intersect with the curved triangle at t =
−2.5409 ns, and leaves the triangle at t = 0 s.

Fig 2. plots the norm of the range corrected electric field∣∣Esca
rc (k̂s, t)

∣∣, obtained by applying the proposed scheme to
the curved triangle in Fig. 1(a) and the scheme presented
in [2] to 6, 36, 216 flat triangles in Fig. 1(b)-(d). Fig. 3
plots the root mean square error between the result for the
curved triangle and the results obtained for 6 – 7776 flat
triangles. As seen in Fig. 2 and 3, the results obtained us-
ing flat triangles are converging to the results obtained for
the curved triangle while the number of the flat triangles
increases. Since the both methods use closed-form expres-
sions only source of error is the geometric modeling. Using
more flat triangles represents the curved surface better, as
a result the error reduces while the number of flat triangles
increases.
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Figure 2. Norm of the range corrected scattered electric
field.
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Figure 3. Error in the range corrected scattered electric
field.

4 Conclusions

In this work, a scheme for the evaluation of the time domain
PO integral on curved triangles is proposed. The scheme
allows reducing the PO integral over the curved surface
to a line integral, then this line integral can be evaluated
in closed-form using proper coordinate transformations. A
preliminary numerical example is presented to show the ac-
curacy of the proposed scheme.
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