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Abstract 
 
Scattering of a plane wave from a spherically symmetric 
lens with negative refractive index, invisible from the 
viewpoint of geometrical optics, is analyzed numerically 
using the hybrid projection method. It is detected that, 
unlike the invisible lens with positive refractive index, the 
minima of the radar cross section in forward direction 
corresponding to the invisibility take place at integer 
values of ka where k is the wavenumber and a is the lens 
radius, instead of half-integer values, and that the 
indicated minima are not so deep because of the 
astigmatism in focusing of the rays at the lens axis.  
 
1. Introduction 
 
One of the extensively developing contemporary 
scientific areas associated with metamaterials is 
transformation electromagnetics aimed in particular at 
creation of covers or shells making objects invisible. In 
the indicated area there have been proposed several types 
of invisible cloaks and a so-called invisible gradient-index 
lens [1, 2] made of isotropic material with positive 
refractive index depending only on radial coordinate and 
approaching infinity in the center. The rays enter the lens 
without reflection, make loops around the center, and exit 
the lens also without reflection in the same direction as 
they entered. Another modification of the invisible lens 
based, unlike [1, 2], on material with negative refractive 
index has recently been proposed in [3] where the author 
has derived expressions for calculation of the refractive 
index profile and ray trajectories. 
 
The lenses indicated above can be invisible from the 
viewpoint of the laws of geometrical optics. However 
geometrical optics is an approximate theory, and therefore 
it is of interest to study wave scattering from the invisible 
lenses at rigorous statement of the problem. Such studies 
of the invisible lens with positive refractive index have 
been carried out in [4, 5] using the WKB method and 
commercial software COMSOL. 
 
The purpose of the present work is numerical analysis of 
plane electromagnetic wave scattering from the invisible 

spherical lens with negative refractive index in rigorous 
statement of the problem and comparison of the scattering 
performance with similar results corresponding to the 
invisible lens with positive refractive index. 
 
2. Geometrical-Optics Characteristics 
 
As derived in [3], the refractive index magnitude of the 
invisible lens is determined by 
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where s=[(r/a)2+1/27]1/2 and a is the lens radius. Analysis 
of (1) shows that the refractive index magnitude equals 1 
on the lens surface and 4 in the lens center. The ray 
trajectories in the lens can be calculated using formula 
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where h=sin and  is the angular coordinate of the point 
on the lens surface where a ray enters the lens. Some 
examples of the ray trajectories are shown in Figure 1. 
 
 

 
 

Figure 1. Ray trajectories in the invisible lens with 
negative refractive index. 



As we see, each ray entering the lens experience negative 
refraction, makes an arc below the lens center (or above 
the lens center if the ray enters the lens below its axis), 
experiences negative refraction at the exit point, and then 
propagates in the direction that would take place in the 
absence of the lens. Note that unlike the lens with positive 
refractive index, the trajectories in Figure 1 have no self-
intersections, and this feature corresponds to finite limits 
of the refractive index variation. 
 
3. Formulation of the Problem of Scattering  
 
The geometry of the problem is shown in Figure 2 where 
a sphere of radius a, relative permittivity ε(r), and 
constant relative permeability , is assumed to be 
illuminated by a plane electromagnetic wave of unit 
amplitude polarized along the x axis and propagating 
along the z axis. The electric and magnetic field strengths 
of the incident wave are determined by formulas Ei=exe

ikz 
and Hi=(ey/η)eikz, ex and ey are unit vectors, η is the wave 
resistance of free space, k=2π/λ is the wavenumber and λ 
is the wavelength in free space. Dependence of the fields 
on time assumed to be taken in the form e–iωt here and 
below is suppressed. 
 
To solve the problem we represent the transverse 
components of the fields as expansions in terms of 
spherical TE and TM waves [6] 
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where Al=il[(2l+1)2]1/2 are coefficients of expansion 
corresponding to the incident wave, Rjl are unknown 
constant coefficients for the TE (j=1) and TM (j=2) 
waves, Ejl(r) and Hjl(r) are unknown variable coefficients, 
l(kr) and l(kr) are functions of Riccati-Bessel and 
Riccati-Hankel, and Te

jl, Th
jl are orthonormalized 

transverse spherical functions [6] of angles  and . 
 
Projection of the Maxwell’s equations written for the 
medium in the lens on the transverse spherical functions 
for each l results in two independent pairs of ordinary 
differential equations 

 

 
 

Figure 2. Geometry of the problem of scattering. 
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with respect to functions Uj(r)=krEjl(r), Vj(r)=krHjl(r). 
For obtaining solution of the equations given above, we 
represent functions U1 и V2 as 
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where U1n and V2n are unknown constant coefficients, fn(r) 
are so-called triangular functions [6] with the tops located 
at rn=nΔ, Δ=a/N, and N is the number of segments. 
Projection of (7) and (9) on fn’(r), account for (8) and (10), 
as well as matching of electric fields (3) and (5) and 
magnetic fields (4) and (6) on the lens surface allow 
reducing the problem to systems of linear algebraic 
equations 
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for TE waves and  
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for TM waves where 
 

 






 
 

a

nn

a

nnnn drff
k

dr
kr

ll
kffZ

00
2

)1( 1)1(


 ,       (17) 

 

 



 

 

a

nn

a

nnnn drff
k

dr
kr

ll
kffZ

00
2

)2( 11)1(


        (18) 

 
are matrix elements.  
 
Coefficients R1l and R2l, corresponding to the scattered 
field, determined as a result of solution of systems (13) 
and (14) as well as (15) and (16) are used for calculation 
of the bi-static radar cross section (RCS) 
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obtained with use of incident and scattered fields in (3) as 
well as asymptotic expressions  
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for Riccati-Hankel functions and their derivatives at large 
kr and accounting for finite number L of spherical 
harmonics for each type. 
 
4. Numerical Results 
 
The method described above has been implemented in 
two MATLAB codes corresponding to the lens with 
negative refractive index and to the lens with positive 
refractive index. Integrals in (17) and (18) for the terms 
which do not involve (r) have been calculated using 
analytical formulas derived for them, while the integrals 
for the terms containing (r) have been calculated 
numerically. In case of the lens with positive refractive 
index the calculations have been carried out with 
extraction and analytical integration of the singularity in 
the lens center [2, 3].  
 
The relative permittivity of the lens with positive 
refractive index is supposed to be determined by the 
square of the refractive index given in [2, 3], while the 
relative permeability is  =1+i" where " determines 
possible loss in the lens. As for the lens with negative 
refractive index, its permittivity is determined as (r)=–n2 

where n is determined by (1), and the relative 
permeability is  =–1+i".  
 
Like it takes place in [6], the code operation is validated 
by the accuracy of fulfilling the optical theorem in case of 
lossless lenses [7], as well as by convergence of the 
results with increasing the number of nodes N and the 
number of retained spherical waves L of each type. 
 
Calculations of RCS (19) have shown that the level of 
back scattering at  = for both positive and negative 
refractive indexes is very low for any lens radius. 
Therefore the indicated parameter can not appropriately 
characterize the lens from the viewpoint of its invisibility. 
More demonstrative parameter is the level of (19) in 
forward direction at  = 0. Dependences of the indicated 
parameter normalized to a2 in dB, i.e. 10lg[(0,0)/(a2)], 
on ka for the invisible lenses with negative and positive 
refractive indexes are presented in Figure 3. The results 
have been obtained at node spacing =0.005. The 
number of retained Fourier harmonics L corresponds to 
rounded values of 2ka+5.  
 
Comparing the curves in Figure 3, we see that location of 
the minima for the lens with negative refractive index 
does not coincide with location of the minima for the lens 
with positive refractive index. As explained in [3], the 
location of the minima in the latter case is determined by 
an additional phase shift of /2 multiplied by 2 because of 
focusing of the rays in line on the lens axis. Unlike that, 
the rays in the lens with negative index (Figure 1) 
experience point (not line) focusing on the axis two times 
though with astigmatism. Each such focusing results in 
phase shift of  [8], so the total phase shift becomes 2 
and the minima turn out to be located between the minima 
for the lens with positive refractive index. 
 

 
 
Figure 3. RCS in the forward direction for the lossless 
invisible lenses with negative and positive refractive 
indexes. 



 
One more feature of the lens with negative refractive 
index is that the RCS minima shown in Figure 3 have a 
considerably higher level compared to the case of the lens 
with positive refractive index. The indicated feature is just 
explained by the presence of the astigmatism mentioned 
above owing to which we observe the filling of the RCS 
nulls.  
 
It is also of interest to study the influence of losses in the 
lenses on the effect of invisibility. Some results of such a 
study are presented in Figure 4 for the case of the lens 
with positive refractive index and in Figure 5 for the case 
of the lens with negative refractive index. As it could be 
expected the losses in the invisible lenses also result in 
additional filling the nulls of the RCS in forward 
direction. 
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Figure 4. RCS in the forward direction for the lossy and 
lossless invisible lens with positive refractive index. 
 


