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Abstract

The character of resonances in plasmonic core–shell struc-
tures is analyzed. In particular, the focus is on the behavior
of the weaker (antibonding) resonance. Using the residue
expansion of the polarizability, it is shown that to maxi-
mize the effect of the antibonding resonance, the ratio of
the core radius to the whole sphere radius should be 0.596.
The polarizability-based results are compared with full Mie
scattering calculations showing fair agreement up to size
parameters x = 1/3.

1 Introduction

A beautiful correspondence exists between mixing theories
and the polarizability response of core–shell structures [1]:
in terms of the dipolar response, a core–shell sphere can
be replaced by a homogeneous sphere whose permittivity
is exactly the same as the effective permittivity computed
according to the Maxwell Garnett mixing principle [2] of
a mixture with shell material as environment and the core
material dispersed as inclusions. The volume fractions be-
tween the two materials are the same in the mixture and in
the composite sphere.

Hence, all analyses on Maxwell Garnett mixing translate
directly into the studies of core–shell spheres. In particu-
lar, there are interesting results on how mixing affects dis-
persion, in other words the frequency dependence of the
effective medium may be qualitatively different from the
dispersion of its constituent material permittivities. There-
fore, also core–shell scatterers can be engineered, with a
clever combination of material pairs, to display dispersion
and resonance spectrum that does not appear in easily avail-
able materials.

In the following, we will focus on a special case of
this phenomenon: the resonance structure of a plasmonic
shell. Due to the afore-mentioned correspondence, this
case is dual to a “Swiss-cheese” mixture where a negative-
permittivity bulk material (silver, for example) is impuri-
fied with spherical holes, and as shown in [3], such a mix-
ture seems promising for broadband tuning of dispersion. A
plasmonic layer can also be exploited in cloaking applica-
tions [4] and in the design of electrically small antennas [5].
In the following, our particular interest is in the character of
the antisymmetric resonance of the composite sphere.

2 Modes in a plasmonic core–shell particle

The (normalized) polarizability of a two-phase composite
sphere of Figure 1 reads [6, Eq. (4.33)]

α = 3
(ε1−1)(ε2 +2ε1)+ r3(2ε1 +1)(ε2− ε1)

(ε1 +2)(ε2 +2ε1)+2r3(ε1−1)(ε2− ε1)
(1)

where r = a/b is the ratio of the core radius to the whole-
sphere radius (r3 is the core–particle volume fraction). The
shell is of relative permittivity ε1 and core of ε2 (all permit-
tivities are relative and dimensionless).
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Figure 1. A composite sphere with core and shell.

Consequently, the polarizability for a hollow-core particle
(with core being ε2 = 1 and the shell ε1 = ε) reads

α = 3
(ε−1)(2ε +1)(1− r3)

(ε +2)(2ε +1)−2r3(ε−1)2 (2)

showing the zeros: in addition to the obvious ε = 1 and r =
1, there is another one, independent of core size: ε =−1/2.
There are two poles:

ε∓ =−5+4r3±3
√

1+8r3

4(1− r3)
(3)

where ε− and ε+ resonances refer to the symmetric (bond-
ing) and antisymmetric (antibonding) modes, according to
the so-called plasmonic hybridization model [7, 8].

For a very small core (r→ 0), the symmetric resonance ap-
pears at ε− =−2 and the antisymmetric one at ε+ =−1/2.
It is worth noting that the antisymmetric resonance vanishes
for vanishing core, because the zero at ε = −1/2 cancels
the resonance ε+ =−1/2.

When the core increases, ε− moves towards minus infinity,
and ε+ increases towards zero. Figure 2 visualizes these
observations, including the invisibility for shell permittivity
ε =−1/2, independently of core size.



Figure 2. The absolute value of the polarizability of a hol-
low plasmonic shell as a function of the shell permittivity
ε . Core volume (a/b)3 = 0.1 (solid blue), 0.3 (dashed or-
ange.)

Connecting the permittivity with a Drude dispersion model
with plasma frequency ωp as ε(ω) = 1−ω2

P/ω2, we can
see that the symmetric resonance starts from ω ≈ 0.577ωp
and redshifts, while the antisymmetric one appears at ω ≈
0.815ωp and blueshifts with increasing hollow core.

The antibonding resonance is clearly weaker and narrower
than the bonding one. Since plasmonic materials are dis-
persive, they are lossy, and an obvious question is how this
resonance is affected by losses. Inserting a complex-valued
shell permittivity into (2) leads to a very convoluted func-
tion for the absolute value of the complex polarizability as
a function of ε ′,ε ′′ and r, and an analytical solution of the
maximum amplitude of neither of the resonances cannot be
found.

3 Residue expansion

An approach to determine the character of the antibonding
resonance is the following. Starting from the observation
that this resonance vanishes for vanishing core (r→ 0) and
vanishing shell (r→ 1), we can try to find its evolution by
expanding the polarizability (2) with its residues. Knowing
the poles (Equation (3)), we can write down a pole expan-
sion of the polarizability:

αnorm = 3+
A−

ε− ε−
+

A+

ε− ε+
(4)

Here the constant accounts for the polarizability approach-
ing 3 in the PEC limit ε →±∞.

The residues are

A∓ =−9(3±
√

1+8r3)(
√

1+8r3±1±2r3)

8(1− r3)
√

1+8r3
(5)

which expressions clearly show the dominance of the bond-
ing mode amplitude A− over the antibonding one A+. (For
r = 0, we have A− =−9 and A+ = 0.)

However, in the neighborhood of the antibonding resonance
(ε ≈ ε+), the polarizability can be well approximated with

the last term of the three in (4). Then the expression for α

simplifies considerably, and is much easier to analyze in the
complex domain than the original polarizability expression.

Given a lossy dielectric shell (ε = ε ′− jε ′′), the question we
ask is how strong the antibonding resonance can be. The
approximation using the antibonding residue shows us that
for a given core volume r3, the maximum polarizability has
the amplitude

|α|max =
|A+|
ε ′′

(6)

The increase of the imaginary part of ε brings the maximum
polarizability down. However, always a maximum exists.
But it is interesting that this maximum polarizability has a
maximum, as can be seen in Figure 3 where the |α|max is
shown as a function of r3.

Figure 3. The absolute value of the maximum of polar-
izability of the antibonding resonance for ε ′′ = 0.05 as a
function of the relative core volume.

The resonance maximum takes place at

r3 =
4
49

+
9
√

2
98
≈ 0.212 (7)

for which A+ ≈ −0.257. In other words, to trigger the an-
tisymmetric resonance in a plasmonic shell most strongly,
the core radius should be a factor a≈ 0.596b from the outer
radius. The needed permittivity for the maximum antibond-
ing polarizability can be computed from ε+ in (3); it is
ε ′ ≈ −0.293. In the ideal Drude model, this corresponds
to the frequency ω ≈ 0.879ωp.

The approximation for the maximum is rather accurate as
can be seen in Figure 4 which shows the exact behavior
of the absolute value of the polarizability in the case r3 =
0.212 and ε ′′ = 0.05.

4 Comparison with full-wave solution

The results so far have been based on concepts based on
electrostatic fields and the manipulation of Laplace and
Poisson equations. However, they carry over into electrody-
namics, to some extent. In the following, let us compare the
above results with full-wave Mie scattering computations.

Figure 5 shows the comparison for the scattering efficiency
Qsca of a hollow sphere with relative core size treated be-
fore, (a/b)3 = 0.212, and the size parameter x = k0b = 1/3.



Figure 4. The absolute value of the polarizability in the an-
tibonding range for ε ′′ = 0.05 and r3 = 0.212 as a function
of the real part of the permittivity. Note that the maximum
agrees well with the maximum in Figure 3 which is based
on the truncated residue approximation.

The polarizability-based approximation for the scattering
efficiency is [9]

Qsca ≈
8
27
|α|2x4 (8)

Figure 5. Quasistatic approximation (dashed orange) and
full Mie solution (solid blue) for the scattering efficiency
of a hollow sphere with optimized antibonding resonance.
Lossless case.

The quasistatic result predicts the behavior fairly well. It
does not capture the narrow quadrupolar antisymmetric
mode. Furthermore, in the dipolar mode there is a slight
shift to more negative permittivity values (redshift).

When losses are included, the quadrupolar mode is washed
away. Figure 6 shows the comparison of the absorption ef-
ficiency of the particle with the same size (x = 1/3) but
now with shell permittivity ε = ε ′ − j · 0.05. Again, the
polarizability-based approximation for the absorption effi-
ciency is [9]

Qabs ≈
4
3
|Im{α}| x (9)

5 Conclusions

The analysis about character of the antisymmetric reso-
nance in hollow plasmonic spheres has shown that to op-
timize the amplitude of this resonance, the hollow core
should occupy a fraction of 0.212 of the total sphere. This
value is independent of the losses and leads to a resonance
at the frequency 0.879ωp.

Figure 6. The same comparison as in Figure 5, but for
the absorption efficiency, and in the case that the shell has
losses: ε ′′ = 0.05.
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