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Abstract 

 

The predictive posterior probability density function in 

the case of rectangular probability model is here derived. 

An example of application of this probability density 

function to a calculation of measurement uncertainty of a 

radiofrequency measurement is also illustrated. This 

probability density function is particularly useful when no 

prior information is available concerning the distribution 

of a quantity (e.g. electromagnetic field) over a region of 

space or time interval. 

 

1. Introduction 

 

The goal here is to provide justification to the use of the 

predictive posterior probability density function for 

describing the random variable associated with a quantity 

that unpredictably varies over a geometrical space or time 

interval. This is particularly useful for uncertainty 

calculations in the field of electromagnetic compatibility 

(EMC) measurements, where it is frequently required to 

generate a reference quantity (electric or magnetic field 

strength, power density, current intensity …) having a 

prescribed uniformity over a given region (length, surface 

or volume). The use of the predictive posterior probability 

density function is consistent with both the GUM [1] and 

GUM Supplement 1 [2] measurement uncertainty 

calculation procedures. Hence it can be immediately 

implemented by personnel operating in testing and 

calibration laboratories already familiar with the GUM 

and GUMS1. 

 

Use is made here of Bayesian inference. Indeed, within 

this theoretical framework, appropriate statistical tools 

(namely, predictive posterior probability density 

functions) appear to be already available for the aim at 

hand. A new posterior probability density function is 

analytically derived that does not appear either in 

textbooks on Bayesian statistics or in the relevant 

scientific literature. 

 

The paper is organized as follows. In section 2 the 

predictive posterior probability density function is 

recalled and its implementation for the rectangular 

probability models is provided. Application to assessment 

calculation of measurement uncertainty is described in 

section 3. Conclusion follows in section 4. An appendix 

provides details on mathematical derivation. 

 

2. Predictive Posterior Probability Density Function 

 

A sample of n observations of the random variable X is 

available and given by ix , 1,2,...,i n . One wants, on the 

basis of the known sample, to predict the probability 

distribution for a future observation x . It is assumed that 

the probability model is given but the parameters of the 

corresponding probability density function are unknown. 

 

The case of the rectangular probability model is here 

considered. The posterior probability density function in 

the case of normal probability model is well known and 

available in textbooks (e.g. [3]). 

 
Let us assume that X follows a rectangular probability 
density function with center c  and half-width w . Let 

 1 2min , ,...,a nx x x x ,  1 2max , ,...,b nx x x x  and 

  2b ax x   . No prior information is available about c 

and w. Then the joint density of c and w is [11] 
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for ac w x   and bc w x  , and  , 0f c w   otherwise.  

Let  u z  be the step function defined as   0u z   for 

0z   and   1u z   for 0z  . Then the rectangular 

probability density function of center c and half-width w 
is given by 
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The predictive posterior probability density function of a 

future observation x  is  | ,f x m   where 

  2a bm x x   and   are the sufficient statistics. It is 

demonstrated in appendix A that 
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The shape of the predictive posterior probability density 
function for the rectangular probability model is shown in 
Fig. 1 in the case 5n  . 

 

Figure 1. Predictive posterior probability density function 

for the rectangular probability model. Case n = 5. 

The expected value of x  is (it is evident from the 

symmetry of (3) about m) 

  E x m  (4) 

and the variance of x  is (derivation is omitted for brevity) 
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In the limit n  the predictive posterior tends to a 

rectangular probability density function having expected 

value m  and variance 
2 3 . Selected values of the ratio 

between  Var x  and the limit 
2 3  are reported in Table 

1. 

Table 1. Ratio between  Var x  and 
2 3  for selected 

values of n. 

n    2Var 3x   

4 3.40 

5 1.89 

6 1.48 

7 1.30 

8 1.21 

9 1.15 

10 1.12 

15 1.04 

20 1.02 

50 1.00 

 

The probability distribution function of x  is 
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(6) 

The inverse of the probability distribution function, 

 1x F  , is readily obtained from (6) as 
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(7) 

For the purpose of random sampling from  F x  random 

values of   are drawn from a rectangular probability 

density function between 0 and 1 (see Annex C of [2]). 

 

3. Measurement Uncertainty of the Power Density 

Transmitted by an Antenna in an Anechoic Chamber 
 

An EM field is generated inside an anechoic chamber for 
the purpose of calibrating an electric field sensor at 
radiofrequency. The sensor is placed in front of a 
transmitting antenna fed by a signal generator. The power 
density of the EM field impinging on the sensor has to be 
determined. The measurement model equation linking the 
power density S (the measurand) with the net power P 
feeding the antenna, the antenna gain G and the distance d 
(along the boresight direction of the antenna) between the 
point where the sensor is placed and the reference point of 
the antenna, is as follows  

  20log 11.0S P G d X     .  (8) 

P and G in (8) are expressed in logarithmic units and d is 
the numerical value of the distance when expressed in 
meter. The quantities P and d are directly measured while 
G is obtained from a certificate of calibration of the 
antenna. The term X is a correction (in decibel) for the 
non-uniformity of the electric field strength over the 
volume where the sensor is placed. The random variables 
associated with P, G, d and X are independent. (8) can be 
rearranged as follows 

 0S S X  , (9) 

where  0 20log 11.0S P G d    . 

Evidence supports the assignment of a normal probability 

density function to 0S , whose mean value is 0  and the 

variance is 
2

0 . A rectangular probability density function 

is instead assigned to the random variable X, whose upper 
and lower bounds are, a-priori, unknown. X is 
experimentally estimated by measuring the electric field 
strength at the 8n   corners of a cubic volume. The 

deviation between the electric field strength measured at 

each of the eight points and 0  is calculated. Let the 

minimum deviation be ax  and the maximum deviation be 

bx . Correspondingly,   2a bm x x   and 

  2b ax x    are the parameters of the probability 



density function (3) which is assigned to the future 
observation of the correction x . 

The following plausible values have been assumed in 

order to provide a numerical exemplification: 
0 0.3 

dB(W/m
2
) (corresponding to an electric field strength of 

approximately 20 V/m), 
0 0.4  dB, 0.2m   dB, 

1.0  dB. The probability density functions for 
0S , X 

and S are shown in Fig. 2 and in Fig. 3. The histogram 

plots have been generated by using the Monte Carlo 

method. Specifically note that (7) have been used in order 

to generate the histogram plot of X (and, as a 

consequence, of S, see (9)).  

 

Figure 2. Histogram plots and normal probability density 

functions for 
0S  and S  (see the legend). 

The exact probability density functions of 0S  (normal, 

blue continuous line) and X (see (3), blue continuous line) 

are plotted in Fig. 2 and Fig. 3, respectively. The normal 

probability density function having mean 0 m   and 

variance 
2 2

0 s   is also shown in Fig. 2 with red 

continuous line. The numerically computed 95 % 

coverage probability interval for S ranges from −1.6 

dB(W/m
2
) to 1.8 dB(W/m

2
), while the corresponding 

interval obtained through the normal probability density 

function approximation (the red line in Fig. 2) ranges 

from −1.7 dB(W/m
2
) to 1.9 dB(W/m

2
). 

 

Figure 3. Histogram plot and probability density function 

(3) for X. 

 

 

4. Conclusion 

 
The use of the predictive posterior probability density 
function for the random variable associated with a 
quantity that randomly varies over a geometrical space or 
time interval is here supported through analysis and 
applications. The aim is ultimately to extend the 
application of the GUM and GUMS1 to measurands 
characterized by distribution of values, which is felt as an 
urgent need in conformity assessment and measurement 
uncertainty calculations in testing and calibration. The 
weakness of the proposed approach is the need to assign a 
defendable probability model to the measurand. The 
originally derived predictive posterior probability density 
function in the case of the rectangular probability model 
can be seen as a widely applicable “soft” parametric 
solution. Further investigation could be devoted to 
identify more flexible, adjustable probability models, than 
the normal and the rectangular ones, within which to 
derive the corresponding predictive posterior probability 
density function. 

Appendix - Derivation of (3) 
 

The posterior probability density function  f x  is, by 

definition [3], obtained as 
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where  ,f c w  is given by (1) and  ; ,f x c w  is given by 

(2). 
 ,c w

D  is the domain of the  ,c w  values where 

 ,f c w  is different from zero. 

 

Figure A.1. Domain 
 ,c w

D  (shaded area). 

Substituting (1) and (2) into (10) and taking into account 

that 
 ,c w

D  is the shaded area in Fig. A.1, we have 
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Consider the integral 
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The result (13) can be derived with the aid of Fig. A.2, 

showing the integrand function of c in (12), and 

considering that the following three possibilities for a 

non-zero value of I apply: 

1.  m w x w     and  m w x w     

2.  m w x w     and  m w x w     

3.  m w x w     and  m w x w     

Note that in any case the condition w   must be 

met (see Fig. 1). 

 

Figure A.2. Plot of the integrand function of integral I in 

(12). 

Hence, if x m    and 
2
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the first row of (13) into (11) we have 
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If m x m      and w   then substituting the 

second row of (13) into (11) we have 
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Finally, if x m    and 
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substituting the third row of (13) into (11) we have 

 

 
   

 

 

1

2

2

1 2

2 2

1 1 2

1 2

n

x m

n

n n x m w
f x dw

w w

n

n x m









 



 

     
  

 

 
      



 . (16) 

(3) immediately follows from (14), (15) and (16). 
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