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Abstract 
 
The paper deals with a derivation of simple and efficient 
analytical solution for the calculation of transient 
impedance of the horizontal grounding electrode. The 
Generalized Telegrapher’s Equation for spatial 
distribution of the scattered voltage in the frequency 
domain is used to derive the transient voltage at the feed 
point of the grounding electrode. Solution is obtained by 
using the Inverse Laplace Transform and Cauchy residue 
theorem. Transient impedance is determined as a ratio of 
time domain voltage and (lightning) current at the feeding 
point. Some illustrative numerical results are given. 
 
1. Introduction 
 
Transient impedance represents one of the most important 
parameters in a lightning protection system (LPS) design 
and its calculation is of paramount importance [1, 2]. 
Accuracy of the transient impedance calculation depends 
on the actual approximations used in developing the 
model and a solution method, respectively. 
Different approaches have been used for the calculation of 
transient impedance of the grounding systems. One of the 
most commonly used methods is the Transmission Line 
Model (TLM) [3, 4]. However, the most accurate 
approach is the full wave electromagnetic model, based 
on related integral equations arising from the antenna 
theory and the thin-wire approximation [1, 5]. This 
approach ensures the accuracy of the results, but with a 
relatively high computational cost. The most important 
parameter to obtain is the current distribution induced 
along the electrode. Provided the electrode current is 
known, other parameters of interest (scattered voltage, 
transient impedance, radiated field) can be readily 
calculated [6]. For simpler (canonical) geometries, 
analytical solution of integro-differential equation can be 
obtained as discussed in [4, 7]. 
In this paper, a derivation of the direct time domain 
formula for the transient impedance of the horizontal 
grounding electrode is carried out. Transient impedance 
of a single grounding electrode is calculated using the 
frequency domain analytical solution for scattered voltage 
induced along the electrode. The obtained frequency 
domain expression is transformed into time domain via 
Inverse Laplace Transform and Cauchy residue theorem 
[7]. 

In the second part of the paper, a derivation of the direct 
time domain solution for transient impedance is outlined. 
Third part of the paper presents some numerical examples 
with the extensive analysis of the obtained results. 
Finally, the concluding remarks are given. 
 
2. Theoretical background 
 
2.1 Antenna model of the grounding electrode 
 
Horizontal, perfectly conducting (PEC) grounding 
electrode of length L and radius a, embedded in a lossy 
medium at depth d and excited by an equivalent current 
source is considered [5], as shown in Figure 1. 

 

Figure 1. Horizontal grounding electrode. 

The medium is characterized with electric permittivity ε 
and conductivity σ. Dimensions of the electrode are 
assumed to satisfy the thin-wire approximation [8]. 
The current induced along the electrode ( )'I x is governed 
by the homogeneous Pocklington equation which 
frequency domain variant is given with [8] 
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where εeff stands for the complex permittivity of the 
medium [9]. 
Green’s function ( ), 'g x x  can be expressed as [5] 
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Propagation constant of the medium is defined as 
2jγ ωµσ ω µε= −  and distances R1 and R2 correspond 

to distances from the source and the image to the 
observation point, respectively. Presence of the earth-air 
interface is taken into account via the reflection 
coefficient arising from the Modified Image Theory [10]. 
Pocklington equation (1) can be solved analytically [5] 
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The scattered voltage along the electrode is defined as an 
integral of the vertical component of the scattered electric 
field [9]. The Generalized Telegrapher’s Equation for the 
spatial distribution of the scattered voltage is given as [9] 
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The expression for scattered voltage can be obtained by 
inserting (3) into (4), which yields 
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To calculate the transient impedance of the grounding 
electrode, the time domain relation for scattered voltage 
has to be determined by applying the Inverse Laplace 
Transform. 
 
2.2 Time domain analytical solution 
procedure 
 
To calculate the transient impedance, the knowledge of 
the voltage at the feeding point (i.e. x=0) of the electrode 
is required 
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where the Green’s function is given as 
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Inverse Laplace Transform of (6) is determined by 
applying the Cauchy residue theorem [11] 
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where the residues are determined according to 
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The voltage function ( )0sctV  has infinite number of poles 

for s σ
ε

= −  and ( )2sinh 0s s Lµσ µε+ = . Residuum for 

the first pole, according to (9), can be written as 
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which can then be reduced to 
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Integral in (11) is readily calculated as 
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Assuming L>>a, residuum is determined as 
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The condition for second (infinite number of) residues is  

 ( )sinh 0Lγ = . (14) 

Since sinh 0x =  for each , 0, 1, 2,...x jn nπ= = ± ± , the 
poles are determined as 
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where b and cn are defined with 
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Corresponding residues are calculated according to (9) 
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Having performed some mathematical manipulations, 
(17) is given by 
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Combining (13) and (18), the following is obtained 
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where 
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Equation (19) represents voltage for the impulse current 
excitation. In order to calculate the voltage and the 
impedance for a double exponential function, analytical 
convolution is performed, thus obtaining 
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Transient impedance can be determined as [1] 
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Combining (21) and (22) the analytical expression for 
transient impedance is obtained 
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3. Computational results 
 
In this section, some illustrative numerical results for the 
transient impedance calculations are given. All the 
calculations are carried out for the grounding electrode 
with radius a=5 mm, buried at depth d=0.5 m in the 
ground with relative permittivity εr=10. Various values of 
electrode length, ground conductivity and lightning pulse 
are examined. 
First set of calculations is carried out for the lightning 
current 1/10 μs pulse and ground conductivity σ=0.1 
mS/m. The length of the electrode is varied as L=5, 10, 20 
m. The results are shown in Figure 2. 

 

Figure 2. Transient impedance of the grounding electrode 
(1/10 µs pulse, L=5, 10, 20 m, σ=0.1 mS/m). 

As can be seen in Figure 2, transient impedance is highly 
dependent on the length of the electrode. Even for a very 
low ground conductivity (σ=0.1 mS/m), increase of the 
electrode length can significantly reduce the steady state 
impedance. On the other hand, early time behavior of the 
impedance is not influenced by electrode length. 
Figure 3 shows the results for the same configuration, but 
for higher ground conductivity (σ=1 mS/m). It can be seen 
that overall impedance is lower than in the previous 
example. It is worth noting that in the case of 20m long 
electrode, the steady state impedance is lower than the 
maximum impedance occurring at appx. t=50 ns. This 
property may have significant influence during the LPS 
design. 

 

Figure 3. Transient impedance of the grounding electrode 
(1/10 µs pulse, L=5, 10, 20 m, σ=1 mS/m). 



Following computational examples are calculated for 
0.1/1 μs pulse, represents very fast pulse with high 
frequency content. Transient impedance for ground 
conductivity σ=0.5 mS/m is shown in Figure 4 and 
exhibits more oscillatory behavior which is a direct 
consequence of high frequency components of the input 
signal. 

 

Figure 4. Transient impedance of the grounding electrode 
(0.1/1 µs pulse, L=5, 10, 20 m, σ=0.5 mS/m). 

In Figure 5, same configuration is considered for the 
higher ground conductivity. Similar behavior of the 
transient impedance can be seen. When compared to the 
results for slower pulse (1/10 µs, shown in Figure 3) 
somewhat higher values of the impedance are observed. 
This can also be attributed to the high frequency content 
of the lightning current excitation. 

 

Figure 5. Transient impedance of the grounding electrode 
(0.1/1 µs pulse, L=5, 10, 20 m, σ=1 mS/m). 

4. Concluding remarks 
 
The paper proposes a simple and efficient approach for 
the calculation of transient impedance of the horizontal 
grounding electrode directly in the time. The approach is 
based on the antenna theory and related thin wire 
approximation. The formulation is based on the 
homogeneous Pocklington integro-differential equation 
and generalized Telegrapher’s equation in the frequency 
domain. The direct time domain solution is obtained in 
the closed form. The principal advantage of the proposed 
analytical solution is to provide a rapid and satisfactory 
estimation of this complex phenomenon. 
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