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Abstract

In recent work, the transmittance between circular aper-
tures was formulated, thanks to the projection of equivalent
currents evaluated on the apertures over Zernike polynomi-
als, through a polynomial series of a near-field coefficient
which is accurate for large apertures and low-order modes.
It was observed that this expansion becomes numerically
instable for low relative distances. In this paper, we derive
a stable representation which can be calculated at arbitrary
distance. In case of identical modes, it reduces to a closed-
form expression for which an asymptotic near-field formula
is given.

1 Introduction

Orbital Angular Modulation (OAM) has given a new mo-
mentum to the study of coupling between large aperture an-
tennas. Indeed, in [1], based on experimental observations,
it was claimed that the exploitation of OAM, i.e. aperture
modes with ¢/ dependence (¢ is azimuthal angle, 1 is an
integer), could lead to communication through an arbitrary
number of modes within a given frequency band. The lim-
itations of this process could be rapidly guessed from the
conical pattern obtained for larger orders n. From there,
it was soon observed that the transmittance between OAM
antennas undergo a faster decay versus distance for high or-
ders, of type 1/"!, which essentially limits the exploita-
tion of OAM to the near (and maybe intermediate) field
region. This has been made quantitatively clearer in [3],
where aperture fields are decomposed into Zernike func-
tions to provide a simple spectral expression for transmit-
tance, as well as an intermediate-to-far field asymptotics
for transmittance, while also including the radial variation
of the field distribution. A higher-order development was
presented in [4], to allow a fast estimation of the transmit-
tance between any pair of apertures, down into the inter-
mediate field. When identical modes are considered for the
transmitting and receiving antennas, a highly characteristic
feature of the transmittance corresponds to the nearly con-
stant - gently undulating - transmittance versus distance,
corresponding to the tubular radiation pattern of aperture
antennas in the near field. This allows the definition of two
clearly differerent regimes of operation, for far and near
fields. Asymptotic expressions of the transmittance have

already been developed in [3] for the far-field case.

In this paper, the transmittance for apertures of same size
is represented through a hypergeometric function of a near-
field parameter, thereby extending the approach in [4]. For
identical modes, the expression reduces to a sum of mod-
ulated Bessel functions. At low distances, it is proven that
the transmittance converges to a constant value. The pa-
per is organized as follows. The mathematical expressions
of the transmittance are presented in Section 1. Then, we
will describe the numerical results in Section 2. Finally, a
conclusion is drawn in Section 3.

2 Mathematical formulation

In [3], the transmittance H between two aperture antennas
is related to a reaction integral between equivalent current
distributions evaluated on the transmitting and receiving
apertures. Those currents are then projected onto separa-
ble functions which are orthogonal over the unit disk and
correspond to the products between a modified circle poly-
nomials of order m of the radial coordinate and a harmonic
function e/"* of the azimuthal coordinate. Subsequently,
the transmittance is decomposed as [3]
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where 7 is an azimuthal index, m and m’ are, respectively,
radial indices of the transmitting and receiving current dis-
tributions and Yym,, V.. are the projection coefficients of
those currents. Considering apertures of radius a separated
by a relative distance z, the quantity H,,,,, can be renamed
¢ and expressed in the spectral-domain as [3]
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where k and 1 are the free-space wavenumber and
impedance, I, is the port current of the transmitting an-
tenna, J the sth order Bessel function of the first kind with
s = |n|+2m+1and k, = (k* — B%)'/2 with radial wavenum-
ber 3.

For intermediate to far distances z and moderate indices n
and m, the spectrum of the current distributions decreases



faster than that of the Green’s function. Hence, the inte-
grand of (2) can be truncated at |k;| < k and we can use
a quadratic approximation k, =~ k — j3%/(2k) in the phase
exponent and k; = k in the denominator. After a change of
variables B’ = Ba, we have
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where the near-field coefficient is € = ka?/z = mz/(4zy),
the far-field distance is zy = 8a4%/A and we substitute L =
—4nma®/(I1;). In [4], this integral was first decomposed
into a polynomial series and then integrated analytically
term by term. Equivalently, it can be rewritten in terms of a
generalized hypergeometric function with the help of [5],
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where the factors are defined as ¢ = (s+5')/2, C;y =
q'(j/2)1/((s+ 1)!(s'+1)!). The hypergeometric function
can be found in most mathematical libraries, such as the
Matlab software [6].

In case of identical modes s = s', which are dominant in the
near-field, the hypergeometric function can be simplified to
a closed-form expression [7],
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where bg = 1,by =2,...,bs_| = 2,bs; = 1. In the near-field
region, i.e. for € > 1, we can use the large argument ap-
proximation of the Bessel functions to obtain the formula,
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This asymptotic expression can be used for € < s>/ and
indicates that the amplitude of the transmittance converges
to L/(2s) for null distances z and then slightly decreases for
larger distances z.

3 Numerical results

For the following numerical experiments, we will con-
sider a wavelength of 1 cm and an aperture diameter of
40A . Firstly, the transmittance is illustrated in Fig.1 for
n=0,.,4,m=2and m' = 1. One can observe that
the model (4) is close to the exact numerical integration of
(2) down to approximatively 2 digits of accuracy over the
whole range of relative distances z. Expression (4) is thus
numerically stable, in contrast with the direct evaluation of
the series representation proposed in [4] which appears to
diverge around z/zy ~ 1072, One must note that the hy-
pergeometric function is mathematically defined by an in-
finite polynomial series in €, similarly to [4]. However, it
has been observed that the evaluation of the hypergeomet-
ric function with a built-in Matlab routine is stable and that
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Figure 1. Transmittance and absolute error curves for
m=2m =1 and n from 0 to 4 (top to bottom). Numer-
ical integration of (2) (solid line) and absolute error of the
expression (4) (dashed line).

the resulting computation time does not depend on its argu-
ment.

Secondly, the near-field approximation (6) is validated in
Fig.2 for n = 0,4 and m = m' = 2. Indeed, the transmit-
tance converges to a constant amplitude L/(2s) for low dis-
tances z. One can also infer that the combination of the
near-field asymptotic and the far-field expression (17) in [3]
could provide a useful tool in the form of a low-pass filter
for the design of aperture antennas.
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Figure 2. Transmittance and asymptotics for m = m’ =2
and n = 0,4 (top to bottom).

4 Conclusion

We have presented mathematical expressions for the trans-
mittance between apertures of same size that can be evalu-
ated at arbitrary relative distances. For the given example,
it has achieved 2 digits of accuracy compared to an exact
numerical integration. We have also derived a near-field
asymptotic formula for identical modes. Future work will
focus on the quantification of the resulting error.
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