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Abstract

When using radar systems to determine the position and
motion of objects, there is an ambiguity problem. This
ambiguity manifests itself for certain sensor configurations
when determining the Direction Of Arrival (DOA) of an
incoming electromagnetic plane wave onto the radar. De-
pending on the sensor positions in space, a radar system
can respond the same way for several different plane wave
DOAs, thereby making it impossible to determine the true
DOA. Therefore we have developed a mathematical frame-
work and a practical method to find all ambiguities in any
multichannel radar. We have used a set intersection view-
point to formulate an alternative form for the solutions to
the ambiguity problem. The new formulation allows for
an efficient implementation using the numerical Moore-
Penrose inverse to find all ambiguities and approximate
ambiguities. This definition led to the discovery of noise-
induced ambiguities in theoretically ambiguity-free radars.
Finally, we explore the possibility to use the sensor gain
patterns to resolve ambiguities and restrict the elevation
angle of a detection. This study originated in the need
to resolve ambiguous meteor trajectories in data from the
Middle and Upper Atmosphere Radar in Shigaraki, Japan.
We have therefore used this radar as a practical example
throughout the paper. Our results and methods can be used
to classify ambiguities in any radar system, to design new
radar systems, to improve trajectory estimation using statis-
tical information and to identify possibly faulty DOA cal-
culations and correct them.

1 Introduction

Ever since Heinrich Hertz in 1886 showed that radio waves
could be reflected from solid objects, the concept of radars
have profoundly impacted science. The reflected radar sig-
nal, or echo, is an electromagnetic plane wave and its Di-
rection Of Arrival (DOA) can be used to detect and dis-
cern position and motion. There are a plethora of methods
available today to determine the DOA onto a multichannel
radar. However, the "ambiguity problem" sheds doubt on
DOA measurements [1, 4]. This doubt boils down to a sin-
gle problem: that a signal output from a radar system could
have been caused by several different DOAs. Determining
DOA:s is critical in many research fields today. For exam-

ple in radar meteor science, DOA measurements are used to
calculate precise meteoroid trajectories and orbits [3]. This
study originated in the need to resolve ambiguous meteor
head echo DOAs in data from the Middle and Upper At-
mosphere Radar (MU-radar) in Shigaraki, Japan, but the
same techniques are also used to track satellites and space
debris. Being able to trust these DOA measurements is of
vital importance if the data is to be used in simulations and
consequent research, such as Monte Carlo-type simulations
of meteor showers and their parent bodies [2].

Therefore we have developed a mathematical framework
and a practical method to find all ambiguities and approx-
imate ambiguities in any multichannel radar system. We
have also examined ambiguities induced by noise in the-
oretically ambiguity-free radars. Finally, we explored the
possibility of using the sensor gain patterns to resolve am-
biguities.

2 Mathematical framework

We define the mathematical equivalent of a radar system
by considering N antenna groups consisting of 7; antennas
each. These antennas have positions in space, denoted as
h ., where the group is indexed by j and the antenna in-
dexed by k. By combining the n; signals from these anten-
nas in each group, the radar system will output N signals,

forming N sensors. We define the sensor positions as the
nj
geometric center r; of the antenna groups, r; = ni Y hj.
T k=1

These N sensors will describe a measurement of an electro-
magnetic plane wave as a set of complex numbers x € CV.
By simulating how these sensors respond to a wave in a sen-
sor response model, one can extract information about the
incoming wave. The sensor response model as a function
of DOA is

Ambiguities arise when a sensor response model responds



the exact same way for different incoming waves, thus mak-
ing it impossible to tell the events apart. If the sensor re-
sponse model has the property that: for all the wave DOAs
it never maps distinct DOAs to the same sensor response,
then it is an injective function. Applying the definition of
an injective function onto our sensor response model yields

R(ky —k;) =27l )

Where I € ZV is an integer vector and R € MV*3 a ma-
trix. The matrix R is defined with the sensor positions r;
as row vectors ro» where 7 denotes the transpose. This
derivation was first performed to find the uniqueness and
linear independence of steering vectors in array space [1],
although not from the injective function viewpoint, but for
the same reasons of describing ambiguity. These equa-
tion were never explicitly solved, instead conditions for
ambiguity-free configurations were derived based on in-
equalities. These conditions have been used to design new
radar systems but they exclude many ambiguity-free radars.
The conditions are also not useful for classifying ambigui-
ties in radar systems as they are a binary indication of the
existence of ambiguity.

3 Solution

3.1 Theoretical ambiguity set

The solution to equation 2 is divided into two steps. The
first step is to find the solution for all wave vector differ-
ences, s = k(60,¢;) —k(62,¢,). Inserting s into equation 2
gives

Rs = 27l 3)

Theorem 1: The solution set Q of s’s to equation 3 can be

N f:}"ﬂi\X
found as a set of surface intersections Q = U Pi
j=1 k= f]r_nin

where fj’-‘flax = {2%J and f}ni“ =— [Z‘tl—’l—‘ The surfaces
that we union are circular plane sections, or disks, defined
as Py = {x € R¥: |x| < %¥ (x+pj,n;) = 0} where the

plane normal is defined as n; = % and the displacement
J

point is defined as p jx = %nj.
3.2 Numerical ambiguity set

The advantage of using the viewpoint of plane intersections
to find the integer solutions is that it can reduce the nu-
merical algorithm to one that is often efficient. We first
manipulate the result from Theorem 1 by using the prop-
erty that set intersection is distributive over set union, i.e.

ANSUT)=(ANS)U(ANT) for all sets A,S,T. Thus

N f;ﬂﬂx
the set Q can be rewritten as Q = ‘ﬂ U Pi| =
j=1 k:f]mm
i NN N
U ... U N Py, Calculating all the terms (] Py,
fy=fin ky=fpin =1 =1

is impractical since it would require an N plane intersec-
tion calculation for Hjjy:] (ff™ — f;.nin) permutations. How-
ever, for any set A, 0N A = 0. Thus if any pair within
Pix, N---NPpy, is the empty set, that entire term will be
the empty set. And we know that for any set A, 0 UA = A.
Thus every term containing two planes not intersecting can
be disregarded.

We will take advantage of the above described property to
exclude unnecessary calculations. To perform this exclu-
Ny
sion, first define a N; plane intersection as %5 = [ Py;
j=1
where J is an indexing set. J is defined as J = { fjr-“i“ <k; <
[ 1< j< Ny, j€Zkj €L}, ie. asetof Ny integer
solutions for the first 1 through N; sensors. .#; can thus
describe all terms and partial terms, where a full term is de-
scribed by Ny = N. The intersection .#; can be calculated
with linear algebra by .#; = {s € R3 : Wys = b,}, where

T
n
an —(n1,pik,)
2 .
Wy = . |.by= : . Here the vectors
nf — (N, Pk, )
Ny

n and p are defined as in Theorem I. Since the matrix W;
is generally not square, to find the solution for s we shall
use the Moore-Penrose inverse. This inverse is denoted M
for the matrix M and has been numerically implemented by
using singular value decomposition. The Moore-Penrose
solution to .#; is s = W, b.

The numerical inverse, Wf, will provide an answer even
though no solutions analytically exists. To check if W;s =
b; has solutions we check the norm divergence of the so-
lution, i.e. a solution exists if |WJWJ+b] —by| < T, where
T denotes a tolerance for error. With this we construct a
algorithm, assuming that N > 3. The algorithm will iterate
trough partial terms .#;, excluding all full terms contain-
ing the partial term if the partial term |[W,W,'b; —b,| > T.
Upon completion of the algorithm it will output a set of
sets of integers Ly = {{k11....kin},...,{kxy1--- . kiyn}}.
This set gives a numerical form of €2, i.e. solutions to equa-
tion 3, as Q = {W,"b, : J € Ly}.

3.3 Ambiguities to DOAs

The second step relies on fixing a DOA, Kg, and then find-
ing all possible vectors sop = ko — k. As all solutions € for
equation 3 are known from Theorem 1 and the numerical
calculation, all points on this surface sy that coincide with
Q represent a distinct ambiguity for kg. This set of ambi-
guities is defined as



1=[0,-1.88,-1.03,-4.03,-2.01,-6.95,-5.01,-6.00,-3.00,
-5.07,-3.98,-1.97,-0.98,1.88,1.03,4.03,2.01,
6.95,5.01,6.00,3.00,5.07,3.98,1.97,0.98] fierr =0.03
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Figure 1. Right panel: MU-radar configuration. Middle panel: solution set Q from algorithm in Section 3.2 and 7 = 0.1.
Left panel: The plane intersections generating the red line highlighted in the middle panel. The title of the left panel shows
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Figure 2. Red crosses indicate the set Q (ko) of ambiguities
defined in Equation 4 for ko (6 = 120°,¢ = 77.5°), which is
represented by the blue star. The contours show the distance
in CV space between the sensor response model for ko and
all other k’s, i.e |x(ko) — x(Kk)|. The contours indicate local
minima in distance, ranging from 1 to 4. The rest of the
DOA space in the figure has an almost constant distance of
8. All predicted ambiguities reside at local minima.

Q(ko) = {so € Q:s9=ko—k Vk}. (4)

As a practical example we have taken the sensor configu-
ration for the MU-radar in Japan [3] and calculated all am-
biguities. Figure 1 shows an illustration of the algorithm.
The right panel shows the MU-radar sensor and antenna
configuration. The middle panel displays the solution set
Q obtained by running the algorithm in Section 3.2. The
left panel illustrates the plane intersections generating the
red line highlighted in the middle panel. The tolerance was
setto T = 0.1 and the title of the left panel shows the integer
solution for this ambiguity, defined as RW]JFb ; =L Tis not
a perfect integer solution, but close enough to create an ap-
proximate ambiguity. This effect will be discussed further
in the next section.

To validate the predicted ambiguities and as an example we
picked a DOA, azimuth 120° and elevation 77.5°, as kg and
found all intersections between the possible sy’s and solu-
tions in Q giving the set Q(ko). Then alongside the pre-
dicted ambiguities, the distance in CN between the sensor
response model for kg and for all other k’s were calculated.
This result is illustrated in Figure 2. The contours indicate
local minima in distance, ranging from 1 to 4. The rest of
the DOA space in the figure has an almost constant distance
of 8. As seen in the figure, all predicted ambiguities (red
crosses) reside at local minima. Thus the prediction holds,
even for approximate ambiguities.

4 Model-matching algorithms

4.1 Noise-induced ambiguity

When the sensor response model has approximately the
same response for several very different waves, then noise
can perturb the signal from one response to another lead-
ing to misclassification of the DOA. We call this effect a
noise-induced ambiguity, or approximate ambiguity. The
fact that the responses are similar where a predicted ambi-
guity resides is illustrated in Figure 2. In this figure none
of the local minima reached 0O since no intersections in Q
remained when the tolerance T was decreased towards the
numerical accuracy of the computation. Thus the MU-radar
has no theoretical ambiguities. Yet there are still approxi-
mate ambiguities when T = 0.1, which is close enough for
the noise to cause misclassifications.

When analysing a signal, it is impossible to disentangle
noise-induced ambiguities as we can only predict statistics
of noise, not its specific values. However, if there are sev-
eral measurements and the noise distribution is known, ex-
amining a distribution of DOAs can indicate what the true
DOA is. Using this knowledge, the trajectory calculation
can be improved. For example, one can create better outlier
analysis or achieve better statistics by moving outliers that
are generated by ambiguities to their correct positions. The



fitting process can also be improved when accounting for
the sensor response space topology.

4.2 Sub-array gain pattern

The sub-array ideal gain pattern is defined as y;(k) =
Y (k) ):Z’: { ¢ "®Pikle3 where Y is the individual antennas
gain pattern and p ; = hj —r;. Modifying the sensor re-
sponse model in equation 1 to account for the antenna gain
pattern we get

x = y(k) O ¥(K) = (k) ¥(r),1.K) )

where ® denotes the Hadamard product, or element-wise
multiplication. This new sensor response model will not
have the same ambiguities as the function in equation 1.

4.3 Using gain to resolve ambiguities

We found that for the MU-radar, the sensor response mod-
els in equation 1 and in equation 5 converge at the zenith.
But they diverge substantially with decreasing elevation.
Indicating that this property can be used to distinguish be-
tween a close-to-zenith detection and a far-from-zenith de-
tection. To examine this possibility further we used the
model-matching algorithm MUSIC [4]. A signal was gen-
erated using Equation 5, then two MUSIC algorithms were
applied on this synthetic signal. The first MUSIC algorithm
used Equation 1 as a model with output k. The second
MUSIC algorithm used Equation 5 as a model with out-
put K. These two algorithms should output different re-
sults if the two sensor response models differ enough so
that the closest match changes. The resulting map is dis-
played in Figure 3 where the colormap shows the magni-
tude of the plane projected distance between the two results
, \/ (ky — k)2 4 (ky — ki)%. Below =~ 80° elevation, the two
algorithms start producing very different results, except in
certain side-lobes where the result is again identical. This
result showed that if these two MUSIC algorithms are run
on a detected signal and the results does not differ, the sig-
nal probably has a DOA with elevation > 80°. This shifting
effect is true regardless if noise perturbed the signal from
ko to a DOA from Q(k), as the modulation by the gain
has not changed. These are the first steps toward a practical
method to resolve ambiguities.

5 Conclusions

We have derived a theoretical representation of all DOA
ambiguities present in any multichannel radar system. We
have also developed a numerical algorithm that can calcu-
late theoretical ambiguities and approximate ambiguities on
a personal computer. We have found ambiguities that can
originate from noise in otherwise ambiguity-free radar sys-
tems. The methods can be used to optimize new sensor

Input: gain modulated signal model
Map: Difference between MUSIC result with and without gain
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Figure 3. Synthetic signal generated using Equation 5.
The first MUSIC algorithm, with output k, used Equation 1
as a model and the second MUSIC, with output k', used
Equation 5. The color shows the magnitude of the plane-
projected distance, \/ (ky —k})? + (ky — k})?, between the
two MUSIC algorithm outputs.

configurations as it provides both an exact identification of
ambiguities given a sensor configuration and a measure of
how close the configuration is to forming new ambiguities.
We have started development towards a method to use the
additional information of sub-array gain patterns to resolve
ambiguities in model-matching algorithms. This informa-
tion can be used, together with statistical information, to
improve trajectory estimation, identify faulty DOA calcula-
tions and correct them.
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