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Abstract

Based on full-wave numerical simulation data, the spatial
probability distributions of stored and dissipated energies
inside a static lossy overmoded cavity are characterized.
The spectral fluctuations and variation of the quality factor
show a significant dependence on the wall conductivity.

1. Introduction

Overmoded cavities (often referred to as reverberation
chambers) provide a paradigm for emulating real-world
complex electromagnetic propagation environments.
Although the frequency dependence of their averaged field
properties is different from that in free-space multipath
propagation, such cavities nevertheless provide useful
physical insight and representation of quasi-random
electromagnetic fields. This can be done for mechanically
static as well as for dynamic scenarios, for example for
applications to wireless mobile communications. In this
work, only static configurations are considered.

Inside a reverberation chamber of interior volume V and
surface area S, the transmission loss between the
transmitted power Py and the volume averaged received
power { Pr )v is governed by the quality factor Q via

2Q
(Prlv = 1oy Pr D
where Q = U / Py characterizes to the ratio of the time-
averaged stored energy U inside V to the energy loss per
cycle (i.e., dissipated power Pg) across S. However, in order
to compare differences between free-space and cavity
transmission loss, it is of interest to study the energy
storage and energy loss individually. Since multipath and
overmoded environments exhibit complex spatial variation
of their field, it is useful to investigate the feasibility of
employing a statistical framework to characterize the
spatial fluctuations based on their probability distribution
[1], even for integrable (non-chaotic) cavities.

The practical evaluation of Q is often limited to estimates
based on local measurements, e.g., those based on S-
parameters at the location of the antennas, r [2]. In order to
evaluate the spatially aggregated energies as required in the
definition of Q, it is therefore of interest to apply full-wave

numerical simulation. In this paper, we present results
based on finite integration time domain (FITD) field
simulations inside a lossy parallelepiped overmoded cavity
excited by a quarter-wavelength monopole antenna.
Boundary and interior field data are analyzed separately to
obtain the empirical probability distributions of their
respective associated energies. These are then compared
with theoretical distributions.

2. Numerical Simulations

FITD simulations (using CST Microwave Studio®) were
performed across the frequency range 950-1049.9 MHz
using a frequency step of 150 kHz. Because of limited time
and computational resources, the Cartesian components of
the E- and H-fields across the entire cavity volume and
boundary were evaluated only at 61 frequencies across the
band 995.425-1004.425 MHz.

The simulated model is a simple parallelepiped cavity of
dimensions 8.7x3.7x2.9 m?, as depicted in Figure 1. The
boundaries of the simulation cavity are nonmagnetic metal
walls with a conductivity of ow = 10,000 S/m. No other
losses are considered. A quarter-wavelength monopole
antenna of nondimensional radius is used for the cavity
excitation. Itis placed 4 mm above the cavity floor (8.7x3.7
m?) and 1.2 m from the nearest vertical walls. The length
of the monopole is adapted for the simulation range. The
interior volume and the antenna are spatially discretized
using adaptive hexahedral meshing. The smallest and
largest spacing between any two adjacent grid points are 4
mm and 28.5 mm, respectively. This results in 4,264,818
mesh cells.

The excitation port is located between one end of the
monopole, at 4 mm above the floor surface, and its
projection onto the floor. The excitation signal is a 100
MHz-wide Gaussian pulse, adapted for the range 950-
1049.9 MHz. Within the bandwidth of the virtual receiver
(995.425-1004.425 MHz), the frequency response of this
pulse has a variation of less than 0.16 dB.

The convergence criterion for terminating the time-domain
simulation is the crossing of a threshold at -50 dBc for the
decaying normalized power, evaluated at the excitation
port and shown in Figure 2, or for reaching a maximum
simulation time of 50 us, whichever condition is met first.



frequency f = 1000.08 MHz are shown in Figure 3. The
corresponding spatial orientations of the field vectors in
this plane for zero phase are shown in Figure 4.
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Figure 1: (a) Simulated resonant cavity and excitation o T e 42 o
monopole. (b) In-situ |S11(f)| of the monopole antenna. (b)
Figure 3: Amplitudes of simulated (a) E-field (V/m) and
(b) H-field (A/m) at z = 1.45 m and f = 1000.08 MHz.
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Figure 2: Time-domain amplitude response of the chamber il
evaluated at the location of the monopole antenna. (a)
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Figure 4: Spatial orientation of the (a) E- and (b) H-field

As an example, the amplitudes of the total (vector) E- and vectors for zero phase, corresponding to Figure 3.

H-fields in the (X,Y)-plane at the height z = 1.45 m and



Conversely, Figure 5 shows the frequency response of the
E- and H-field amplitudes at (x=4.35, y=1.776, z=1.45) m.
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Figure 5: Field variation across simulated frequency range
at (x=4.35, y=1.776, z=1.45) m: (a) E-field and (b) H-field.

4. Statistical Analysis

From the magnetic field data, Q can be estimated from the
interior field H and the tangential boundary field H: as [1]
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where &y is the skin depth of the walls. Figure 6a shows
Q(f) at ow = 10,000 S/m and Figure 6b shows the mean-
normalized standard deviation oof/ug across the 61
simulated frequencies for selected values of ow. The results
demonstrate that Q(f) exhibits rapid spectral fluctuations
and that the magnitude of the fluctuations of Q(f) rapidly
increases with decreasing wall losses.
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Figure 6: (a) Q(f) for ow = 10,000 S/m. (b) Coefficient of
spectral variation of Q as a function of conductivity cw.

Figure 7 presents the local magnetic energies, viz., the
stored |H(r)[?> and dissipated energy [H¢(rs)? at f = 995.575
MHz as a function of linear scan locations r and rs,
respectively. The scanning process is unidirectional and
parallel to the X-axis, in planes parallel to the (X,Y)-plane,
from (0O, 0, 0) to (58, 25, 20). The boundary field scans are
shown in the order (z=0, z=2.9, y=0, y=3.7, x=0, x=8.7) m.

f=995.575 MHz: M ,=0.45327, M _=0.4209
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Figure 7: Stored interior energy (top) and dissipated
boundary energy (bottom) position at f = 995.575 MHz as
a function of scan position.

The analysis at this and other frequencies within the
simulated band indicates that the dissipated energy shows
statistical heterogeneity between the three pairs of parallel
boundaries, at break points separated by 912, 2242 and
3068 scan points, respectively. This heterogeneity is
attributable to the asymmetric location of the antenna
(relative to the wavelength) with respect to these
boundaries. It has been verified that this heterogeneity can
be eliminated by source stirring of the antenna, or by
renormalizing with respect to the dissipated energy per pair
of parallel planes.

Figure 8 shows theoretical (dashed) y%w, and y?, and

empirical  (solid) cumulative and complementary
cumulative distribution functions of the interior (blue) and
boundary (red) field energy or intensity for the scanned
data in Figure 7, after normalization by their respective
standard deviations. The Figure also lists the values of the
distribution parameters My and Mp at this frequency, as
estimated from the data by means of the statistical moment
method based on the sample mean and sample standard
deviation. Both values My and Mp are similar — ideally
identical [1], [2] — but significantly smaller than 1 because
of the absence of ensemble averaging (stirring) for this
static cavity. The results suggest that, despite the
inhomogeneity of the tangential boundary H-field, the
spatial distribution of the boundary energy of the static
cavity is close to what can be expected for a randomized
(stirred) boundary field, albeit with a lower number of
degrees of freedom than for a stirred field.
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Figure 8: Theoretical (dashed) y%w, and x%wm, and

empirical (solid) distributions for the standardized stored
(blue) and dissipated (red) energies or intensities associated
with the data of Figure 7: (a) cumulative (CDF) and (b)
complementary cumulative (CCDF) distribution functions.

5. Conclusion

In this work, we obtained data from full-wave time-domain
simulations inside a highly overmoded reverberant lossy
cavity across a narrow (1%) bandwidth. These were used
to derive the stored and dissipated energies for estimating
Q numerically from the magnetic field inside the cavity and
on its boundary. It was found that Q(f) exhibits rapid
spectral fluctuations and that the magnitude of the
fluctuations of Q(f) rapidly increases with increasing wall
conductivity.

The empirical spatial probability distributions of the
individual stored and dissipated energies were obtained and
compared against respective y2 ensemble distributions for
ideal statistically homogeneous isotropic circular Gaussian
random fields. Despite the regular pseudo-random, but
complex nature of the field pattern as demonstrated in
Figure 3, it was found that the spatial probability

distributions can still be applied, similar to those used for
representing ensemble random fields, albeit with different
(lower) values for their degrees of freedom. This indicates
that, in the simulated frequency band, the spatial pseudo-
random process for this static integrable cavity is still well
away from the ergodic limit, despite the good agreement
with theoretical %2 (or, more generally, gamma)
distributions.

From the scan data plots in the absence of source or other
stirring (ensemble generation), it was found that the
tangential boundary magnetic energy in the static cavity
exhibits considerable spatial inhomogeneity across the
surfaces, even in highly overmoded conditions (1 / VY3 ~
0.066). This inhomogeneity can be ascribed to the positon
and of the monopole antenna with respect to the cavity
walls. Source stirring or renormalization of boundary
energy with respect to the dissipated power per wall can be
used to increase the statistical homogeneity uniformity).
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