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Abstract—Studying electromagnetic inertia in SI units of the
waveguide modes needs rearrangement of standard Maxwell’s
equations to a novel format where the electric and magnetic fields
have common physical dimensions. The time-domain waveguide
modes are found out explicitly via solving Maxwell’s equations
in their novel format in SI units within the framework of the
evolutionary approach to electrodynamics. Electromagnetic mass
and momentum of the waveguide modes are obtained as the
mechanical equivalents of the energetic fields characteristics.

I. INTRODUCTION

Studying inertia of the electromagnets fields in the free
space was recently presented in [1] and in other publications
cited herein. The authors derived criteria for the electromag-
netic inertia under a strict requirement that the electric and
magnetic fields are summable. In other words, both fields
should have a common physical dimension. It is so if a
researcher operates within the framework of the CGS metric
system. In the generally accepted SI units, however, the
electric and magnetic fields have distinct dimensions as volt
per meter, Vm−1 , and ampere per meter, Am−1 .
Our interest to the mechanical properties of the electro-

magnetic fields (and some other motivations) promoted us to
reorganize the standard Maxwell’s equations in SI units to a
novel format (but staying in the SI metric system) where the
electric and magnetic fields have common dimensions. The
results in this direction were originally presented in [2], [3],
and reported at this Symposium earlier [4]. In our version of
Maxwell’s equations all the electromagnetic quantities have
their common dimension of inverse meter m−1 and involve
only one fundamental physical constant: that is, the speed of
light in vacuum, c, see equations (1a)− (1b) below.
Outline of this presentation involves three main parts,

namely: 1. Analytical solution of the boundary-value problem
for studying propagation in waveguides for the time-varying
waveforms (signals). 2. Presentation of the modal energy
density and the modal power flow density via new time-
dependent vector fields, E and H, which have their common
dimension of inverse meter m−1 . 3. Derivation of mass
and mechanical momentum as the mechanical equivalents of
the energetic characteristics of the modal fields. The analytical
results will be illustrated graphically.
A waveguide is geometrically homogenous along its axis

Oz. Waveguide cross section, S, is bounded by a closed
singly-connected contour, L. The contour is smooth enough in
the sense that none of its possible inner angles (i.e., measured

within S) exceeds π. In analysis what follows, a triplet of
the mutually orthogonal unit vectors, z× l = n, will be
used where unit vector z is axial, l and n are the tangential
and normal to L unit vectors, respectively. The waveguide
surface is perfectly conducting. To model possible losses, it is
supposed that the waveguide is filled up with a rare electron
gas for which Ohm’s law holds as J=σE where σ is a constant
of conductivity measurable in siemens per meter, Sm−1 .
So, equations (1a) − (1c) should be supplemented with

the boundary conditions (1d) . In total, the set of equations
(1a) − (1d) composes standard statement of the boundary-
value problem for the study of propagation in waveguides for
the time-varying waveforms (signals) as follows:

∇×H (r,t) = 1
c
∂
∂tE (r,t) + γ0 E (r,t) (1a)

∇× E (r,t) = − 1
c
∂
∂tH (r,t) (1b)

∇ · E (r,t) = 0, ∇ ·H (r,t) = 0 (1c)
l · E|L=0, z · E|L=0, n ·H|L=0 (1d)

where E, H, and γ0 carry dimension of inverse meter m−1 .
At any step of analysis, one can recover the standard electric

and magnetic field vectors, E and H, electric current density
J by the scaling formulas given in [2]-[4] as

E (r,t) = �V0E (r,t)∼=3.3607×105E (r,t) Vm−1 (2a)
H (r,t) = μA

0H (r,t)∼=8.9206×102H (r,t) Am−1 (2b)
J (r,t) = μA

0J (r,t)∼=8.9206×102J Am−2 (2c)

The scaling coefficients, �V0 and μA
0 , were defined herein as

�V0
def.
= N/�0 ∼= 3.3607×105 �V� (3a)

μA
0
def.
= N/μ0

∼= 8.9206×102 �A� (3b)

γ0
def.
= Sm−1 �V0/μ

A
0
∼= σ0 376.73 m−1 (3c)

where N≡ kgm s−2 is the force unit, newton, V≡Nm/ (A s)
is dimension of volt, A is ampere, Sm−1 is dimension of
siemens per meter, and number σ0 is quantity symbol of σ
(i.e., σ0 is a number of units Sm−1 , which is present in σ
given SI metric system). One can verify formulas (3a)− (3c)
with using the definitions for �0 and μ0 (see [5]), that is,

�0 =
1

c20 4π×10−7
Fm−1≡A2 s2N−1m−2 (4a)

μ0 = 4π×10−7 Hm−1≡NA−2 . (4b)

where number c0=2.99792458×108 is the quantity symbol for
the speed of light. For example, c = 1/√�0μ0 = c0 ms−1 .



II. TIME-DOMAIN MODES IN THE LOSSY WAVEGUIDES

We have to solve problem (1a)− (1d) in the time domain.
To this aim, the field vectors herewith should be sought as the
real-valued vector functions of coordinates and time.

A. Solving problem (1a)− (1d) for the TE modal fields
Format of the transverse-electric (TE) waveguide modes is

ETE = A (z, t) e (r⊥) , ETE
z ≡ 0 (5a)

HTE = B (z, t) h (r⊥) + h (z,t) hz (r⊥) (5b)

where the vectorial factors should be find out as the elements
of a modal basis in the waveguide cross-section domain S,
r⊥ is two-component projection on S of the three-component
position vector of a point of observation, r = r⊥ + z z. The
scalars, A, B, and h are the modal amplitudes. As a generator
of the modal basis, we use a complete set of eigensolutions to
the Neumann boundary-eigenvalue problem for the transverse
part of Laplacian, ∇2⊥ = ∇2 − ∂2

∂z2 , that is,

∇2⊥+ν2n ψn (r⊥)=0, n ·∇⊥ψn (r⊥) |r⊥∈L=0 (6a)
ν2n/S S

ψ2nds = 1 (6b)

where ν2n > 0 are the eigenvalues and ψn are appropriate
eigensolutions, subscript (n) , n = 1, 2, . . . , organizes a
distribution of ν2n in increasing order of the numerical values
on real axis. If the contour L is composed by the coordinate
lines, the subscript n is double.
Example 1. A rectangle in Cartesian coordinates as

0≤x≤a, 0≤y≤b is a typical waveguide cross-section. Solving
Neumann problem (6a) with accuracy to a constant factor is

ψn (r⊥) ≡ ψp q (x, y) = cos (πpx/a) cos (πqy/b) (7a)
ν2n ≡ ν2p q = (πp/a)

2
+ (πq/b)

2
> 0 (7b)

where p = 0, 1, 2, . . . and q = 0, 1, 2, . . . are integers.
The boundary conditions (1d) generate all elements of the

modal basis for the field presentation (5a)− (5b) as
e (r⊥) ≡ en (r⊥) = ∇⊥ψn (r⊥)× z (8a)
h (r⊥) ≡ hn (r⊥) = ∇⊥ψn (r⊥) (8b)
hz (r⊥) ≡ hz n (r⊥) = z νnψn (r⊥) (8c)

where ψn (r⊥) is assumed as a dimension-free function. So,
the complete set of TE-modes in format (5a)− (5b ) is

ETE
n = An (z, t) en (r⊥) , ETE

z n ≡ 0 (9a)
HTE
n = Bn (z, t) hn (r⊥) + hn (z,t) hz n (r⊥) (9b)

where the modal amplitudes are unknown as yet. It is worth-
while to notice that all the modal elements have dimension
of m−1 . Besides, the modal amplitudes, An, Bn, and hn,
should be found out as the dimension-free functions also.
A problem for the modal amplitudes can be obtained by

substituting the fields (9a) − (9b) to Maxwell’s equations
(1a)− (1c) .The final result of these manipulations is

hn (z,t) = θ (z, t) exp(− 1
2γ0ct) (10a)

( 1c2
∂2

∂t2 − ∂2

∂z2 + ν2n − γ20/4) θ (z, t) = 0 (10b)
An = − 1

c
∂
∂t hn(z, t), Bn = ∂

∂z hn(z, t) (10c)

where Eq. (10b) is known as Klein-Gordon equation (KGE).
The modal amplitudes An and Bn become dimension-free if
one operates with the dimension-free variables specified as

ξ = νnz and τ = νnct for TE-modes (11)

and the solutions to KGE, θ (ξ, τ) , are dimension-free also.

B. Solving problem (1a)− (1d) for the TM modal fields

To begin with, we shall define all elements of the modal
basis for TM-modes in the waveguide cross-section domain
S. For this purpose, the complete set of eigensolutions to
Dirichlet boundary-value problem for the Laplacian, ∇2⊥, will
be used as a potential. Statement of that problem is

∇2⊥+κ2m φm (r⊥) = 0, φm (r⊥) |r⊥∈L = 0 (12a)
κ2m/S S

φ2mds = 1 (12b)

where κ2m > 0 are the eigenvalues and φm are appropriate
eigensolutions, subscript (m) , m = 1, 2, . . . , organizes a
distribution of κ2m in increasing order of the numerical values
on real axis. If the contour L is composed by the coordinate
lines, the subscript m is double.
Example 2. Take again that rectangular domain S de-

scribable as 0 ≤ x ≤ a, 0 ≤ y ≤ b. Solving Dirichlet problem
(12a) with accuracy to a constant factor is

φm (r⊥) ≡ φp q (x, y) = sin (πpx/a) sin (πqy/b) (13a)
κ2m ≡ κ2p q = (πp/a)

2
+ (πq/b)

2
> 0 (13b)

where p = 0, 1, 2, . . . and q = 0, 1, 2, . . . are integers.
Boundary conditions (1d) suggest to define the basis ele-

ments in the cross-section domain, S, as follows:

hm (r⊥) = z×∇⊥φm (r⊥) (14a)
em (r⊥) = ∇⊥φm (r⊥) (14b)
ez m (r⊥) = z κmφm (r⊥) (14c)

Hence, the TM-modal fields are presentable as

HTM
m = Am (z, t) hm (r⊥) , HTM

z m ≡ 0 (15a)
ETM
m = Bm (z, t) em (r⊥)+em (z,t) ez m (r⊥) (15b)

with accuracy to the modal amplitudes of the field components.
Substituting the fields (15a) − (15b) to Maxwell’s equations
(1a)− (1c) results in the problem for the amplitudes as

em (z,t) = ϑ (z, t) exp(− 1
2γ0ct) (16a)

( 1c2
∂2

∂t2 − ∂2

∂z2 + κ2m − γ20/4)ϑ (z, t) = 0 (16b)
Am = − 1

c
∂
∂t em(z, t), Bm =

∂
∂z em(z, t) (16c)

The modal amplitudes Am and Bm become dimension-free if
one operates with the dimension-free variables specified as

ξ = κmz and τ = κmct for TM-modes (17)

and the solutions ϑ (ξ, τ) to KGE (16b) are dimension-free.



C. Real-valued time-harmonic modes in lossy waveguides
Problem (16a)− (16c) in terms of variables (17) looks as

em (ξ,τ) = ϑ (ξ, τ) exp(−αmτ) (18a)

( ∂
2

∂τ2 − ∂2

∂ξ2
+ 1− α2m)ϑ (ξ, τ) = 0 (18b)

Am = − ∂
∂τ em(ξ, τ), Bm =

∂
∂ξ em(ξ, τ) (18c)

where αm=γ0/ (2κm)<1 is a dimension-free format of the
lossy parameter γ0 : see (1a) . KGE (18b) supports propaga-
tion of the time-harmonic waves presentable as

ϑ (ξ, τ) = C sin (ϕ+�mτ − βmξ) (19)

where 0 ≤ ϕ ≤ 2π, � = ω/ (κmc) is dimension-free format
of the frequency parameter ω, −∞ < ω <∞, and

βm = �2
m − (1−α2m) (20)

is dimension-free propagation constant, C and ϕ are arbitrary
constants. Presence of two free constants, C and ϕ, in (19)
indicates that we take into account two linearly independent
solutions to KGE (18b) . Indeed, combination in (19) yields

ϑ (ξ, τ) = A sin (�mτ−βmξ) +B cos (�mτ−βmξ) (21)

where A=C cosϕ and B=C sinϕ. One can verify that the
amplitudes in (18c) are dimension-free. Condition βm=0
specifies the cut-off frequencies, ωcut−offm , of the TM-modes,
which propagate in the lossy waveguides, as

ωcut−offm = κmc 1− (γ0/2κm)2 (22)

where γ0 is the lossy parameter, which was first introduced in
(1a) and then specified in (3c) .

D. Real-valued time-harmonic oscillations in a lossy cavity
A general cavity version of the EAE was given in [6], [7],

[8]. Consider TE-oscillations in a short-circuited piece of the
cylindrical waveguide located between two cross sections at
z = 0 and z = #. Apply the boundary condition of the perfect
electric conductor at those cross sections as

hn (z, t) |z=0,� = exp(− 1
2γ0ct) θ (z, t) |z=0,� = 0, (23)

see formulas (10a) − (10c) for the TE-modes (9a) − (9b) .
Apply factorization of the potential θ (z, t) as

θ (z, t) = Z (z)T (t) , (24)

substitute (24) to (10b) and separate the variables what yields

1
T (t)

d2T (t)
c2dt2 + ν2n − γ20/4 =

1
Z(z)

d2Z(z)
dz2 = −λ2 (25)

where −λ2 is a constant of separation of the variables. This
yields a boundary-value problem for Z (z) as

d2

dz2Z (z) + λ2Z (z) = 0, Z (z) |z=0,� = 0 (26)

what results in

λ2≡λ2s=(π s/#)2 , Z (z)≡Zs (z)= sin πs z� (27)

where s is integer, The first part of equation (25) yields

d2

dt2T (t) + c
2 ν2n+

π s
�

2−γ20/4 T (t) = 0. (28)

This results in the time-harmonic solution as

T (t) ≡ Tn s (t) = C̄ sin (ϕ̄+ Ωnst) (29)

where Ωns=c ν2n+(π s/#)
2−γ20/4 is frequency of oscilla-

tions, C̄ and ϕ̄, 0 ≤ ϕ̄ ≤ 2π, are arbitrary constants. Presence
of these constants in (29) means that two linearly independent
sine and cosine solutions of equation (28) are involved in the
solution (29) . In the case of the cavity with rectangular cross
section (see Example 1) the frequency Ωns ≡ Ωpqs is

Ωpqs=c (πp/a)
2
+(πq/b)

2
+(π s/#)

2 − γ20/4 . (30)

Presence in (30) of the lossy parameter γ0 (see (3c)) shows
how γ0 reduces the frequency of harmonic oscillations.

III. ENERGETIC CHARACTERISTICS OF THE MODAL FIELDS

Electromagnetic field energy density, U , is specified via the
standard field vectors, E and H, as it is given in (31a) . The
quantity U carries dimension of joule per meter3 Jm−3 .

U (r,t) = (1/2) (�0E · E+μ0H · H) Jm−3 (31a)
= (1/2) ( �0�

V
0E · �V0E+μ0μA

0H · μA
0H ) (31b)

Substitutions of (3a)−(3b) to (31a) is shown in (31b) . Simple
manipulations result in the same quantity, but denoted as U
since that is expressed via the field vectors, E and H, as

U (r,t) = (1/2) (E · E+H ·H ) Nm−2≡ Jm−3 (32)

where joule is product newton meter, � J≡Nm� .
The power flow of the energy density is specified by

Poynting vector, S, expressed via the fields E and H as

S (r,t) = [E ×H] = [ �V0E × μA
0H ] Wm−2 (33)

where watt, �W� , is joule per second, W=J s−1 . The same
power flow, but expressed via the fields E and H, is

S (r,t) = c [E×H] Nm−1 s−1≡Wm−2 (34)

where c = 1/√�0μ0 = c0 ms−1 is the speed of light.
Umov had proved that velocity of transportation of energy

in any wave process is a simple fraction where the power flow
stands in numerator and stored energy in denominator [9]. Ac-
cording to Poynting’s theorem [10], velocity of transportation
of the modal field energy is written below in terms of the
standard field vectors and in term of the new ones as

V (r,t) = S(r,t)
U(r,t) =

2[E×H]
�0E·E+μ0H·H ms−1 (35a)

V (r,t) = S(r,t)
U(r,t) = c

2 [E×H]
E·E+H·H ms−1 . (35b)



IV. INERTIAL PROPERTIES OF THE MODAL FIELDS

Scaling the vector S by the light velocity, c, yields
...
S (r,t) = S (r,t) /c = [E×H] Nm−2≡ Jm−3 . (36)

Notice that the new vector,
...
S , and the scalar U (see (34))

have common their dimensions. Following Kaiser’s technique
[1], compose a pair of new scalars (!) as follows:

U (r,t) = 1
4 (E2+H2)

2
= 1

4 (E4+2E2H2+H4) (37a)

I (r,t) = (E×H) · (E×H)= E2H2−(E ·H)2 (37b)

where dot product [E×H] · [E×H] is found out by applying
identity from [[11], eq. (B.8)]. Combination of U and I as

R(r,t)=
√
U2−I2= 1

2 (E2−H2)2+4(E ·H)2 J/m3

(38)
was defined as the reactive (rest) energy density in [1].
In relativistic mechanics, the general relationship between

energy E of a particle with its mass m and momentum p in
the state of rest is as follows:

E = c p2 +m2c2 and p = mv/ 1− v2/c2 (39)

where v is velocity of the particle in the chosen inertial
reference frame [12]. We shall use this statement for derivation
of the inertial properties of the electromagnetic modal waves.
First notice that in the reference frame of rest, where v = 0,
equations (39) result in famous Einstein’s formula E = mc2.
And vice versa, the mass m of the particle (as a measure of
its inertia) is expressible via its energy as

m = E/c2. (40)

By analogy, electromagnetic inertia (in the reference frame of
rest) can be specified via replacing the energy E in (40) by
the electromagnetic energy R given in (38) what yields

mEM = R(r, t) /c2 (41a)

=
1

2 c20
(E2−H2)2+4(E ·H)2 kg/m3 .(41b)

At this point, two important comments should be made: (1)
the quantities E2−H2 and E ·H are the invariants with respect
to the inertial reference frames, and (2) the fields E and H are
orthogonal in all the waveguide modes and hence, (E ·H)=0.
Thus, we have for the reference frame of rest as

mEMc
2 = R(r, t) = 1

2 c20
E2 −H2 J/m3 (42)

accordingly to (41a) , (38) and that condition (E·H)=0.When
the particle energy E is large compared to its rest energy mc2,
Landau specifies momentum as p = E/c (see [12] eq. (9.9)).
We replace therein E by I (see (37b)) what yields definition
(43a) for the momentum of modal fields as

p = E/c = I/c (43a)
pEM = I/c =

1
c0
|E| |H| kg ms /m

3 . (43b)

In (43b) , calculations are presented for volumetric distribution
of a mechanical momentum of the waveguide modes.

Graphical results are exhibited below provided that the dot
products of the vectors (i.e., E2 and H2) are averaged over
the waveguide cross section S. For the TE-modal fields, the
results are

1
S S

ETE
n · ETE

n ds = A2n (z, t) (44a)
1
S S

HTE
n ·HTE

n ds = B2n (z, t) + h2n (z,t) (44b)

where normalization condition (6b) in calculations. The aver-
aged TM-modal fields are

1
S S

HTM
m ·HTM

m ds = A
2
m (z, t) (45a)

1
S S

ETM
m · ETM

m ds = B
2
m (z, t) + e

2
m (z,t) (45b)

where normalization condition (12b) was used.
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Fig. Electromagnetic inertia of the waveguide modes: dependence on
time of mass (above) and momentum (below).

Notice that pEM in (43b) is absolute value of the momentum.
We imply that vector p̃EM is colinear to Poynting vector.
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