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Abstract

In this paper, it is investigated how the numerical method

of moments can be used for analysis of antenna excitation

of quasi-electrostatic waves, propagating in cold magneto-

plasmas close to the resonance cone. The main attention is

focused on the properties of the integro-differential equa-

tion, that describes the charge distribution along the an-

tenna wire, and the kernel of this equation. The calculations

are performed for the parameters typical for the near-Earth

plasma. Hence, the results can be used for design of the

near-Earth plasma probing missions.

1 Introduction

It is known that quasi-electrostatic waves can propagate

close to the resonance cone in a magnetoplasma, particu-

larly in the whistler mode frequency range [1]. Their wave

numbers (a) are much larger than the inverse length λem

of the parallel (with respect to the ambient magnetic field)

propagating electromagnetic wave and (b) generally, in

a collisionless plasma, can be arbitrarily large. Conse-

quently, these waves are effectively radiated by the short

electric dipoles of length 2L � λem [2]. Importantly, such

dipoles are generally easier to place on spacecraft than

a half-wave dipole because of their size.

Hence, the short electric dipoles are suitable for the near-

Earth plasma probing missions. For example, such dipoles

were used both for transmission and reception of waves

(in particular, at the frequency of 100 kHz) on the tethered

sounding rocket double payload OEDIPUS-C that reached

an apogee altitude of 824 km over northern Alaska [3].

Now the VLF (1–10 kHz) transmitter POPRAD for polar

orbiting LEO satellites is proposed in order to perform sys-

tematic probing of the plasmasphere by transmitting im-

pulses that are powerful enough to reach the other hemi-

sphere propagating along the magnetic field lines [4].

It is known that the electrodynamic characteristics (e.g., the

input impedance and directivity) of antennas in magneto-

plasmas in the resonance conditions (i.e., when the reso-

nance cone exists) differ from the vacuum case both qual-

itatively and quantitatively. Indeed, the expression for the

input impedance of the short antenna in the resonance mag-

netoplasma contains a significant real term which is equiv-

alent to the radiation impedance R > 0 [5, 6] while R ≈ 0

for a short dipole in a vacuum [7]. This is because a plasma

wave is effectively radiated. Consequently, the dipole field

pattern in the resonance magnetoplasma is very different

from the vacuum case: the electric field has the maximum

value on the resonance cone [8].

Therefore, for practical applications and spacecraft design,

it is important to be able to calculate these electrodynamic

characteristics for antennas of arbitrary geometry. In or-

der to do this, one should find the current (charge) dis-

tribution on the antenna surface first of all. (This distri-

bution is also important for a problem of electromagnetic

compatibility of the spacecraft sensors, that may be sensi-

ble to strong currents and fields.) This problem is reduced

to solution of the corresponding integro-differential equa-

tion that follows from the electromagnetic boundary con-

ditions. However, this can be done analytically only for

antennas of very simple geometry, such as straight cylin-

drical dipoles [6, 9]. Therefore, numerical calculations of

such systems gain in importance. Typically, this integro-

differential equation is solved using the numerical method

of moments that works very well for antennas in a vacuum

case [10, 11]. Unfortunately, this method is not yet adapted

for antennas in anisotropic media such as resonance mag-

netoplasmas when the kernel of this equation (the Green’s

function) is singular not only at the source point but on the

resonance cone surface too. In this paper, it is investigated

how this method can be used for analysis of antenna excita-

tion of quasi-electrostatic waves, propagating in cold mag-

netoplasmas close to the resonance cone.

2 Problem Formulation and Basic Equations

A symmetric center-fed dipole of length 2L � λem and

radius a � 2L, immersed in a cold magnetoplasma and

parallel to the ambient magnetic field �H0, is considered

(see Fig. 1). Its radiation frequency ω is such that

the resonance cone exists. Hence, its radiation elec-

tric field ℜ[�E(�r)exp(−iωt)] is quasi-electrostatic at each

moment of time, �E(�r) = −∇Φ(�r), and satisfies equation

div[ε̂εε∇Φ(�r)] = 0 in ambient space (i.e., outside the dipole),

or

ε
∂ 2Φ
∂x2

+ ε
∂ 2Φ
∂y2

+η
∂ 2Φ
∂ z2

= 0, (1)



where ε and η are the transverse and longitudinal compo-

nents of the dielectric tensor ε̂εε , respectively. Importantly,

εη < 0 throughout the paper because the resonance condi-

tions are considered.
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Figure 1. Geometry of the problem.

The Green’s function of (1) that corresponds to the outgoing

waves is [6]

G(�r,�r′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|εη |−1/2 sgnε√
−(x− x′)2 − (y− y′)2 +μ2(z− z′)2

,

(x− x′)2 +(y− y′)2 < μ2(z− z′)2;

− i |εη |−1/2

√
(x− x′)2 +(y− y′)2 −μ2(z− z′)2

,

(x− x′)2 +(y− y′)2 ≥ μ2(z− z′)2,

(2)

where μ2 = |ε/η |. Note that this function is singular on the

resonance cone surface (x− x′)2 + (y− y′)2 = μ2(z− z′)2

and becomes purely imaginary when crossing this surface.

From (1), it is possible to represent Φ(�r) as a functional

of the charge density distribution σ(�r) on the antenna sur-

face S:

Φ(�r) =
‹

S

σ(�r′)G(�r,�r′)dS′. (3)

Representing the total electric field as a superposition of

(a) the radiation field �E and (b) the electric field �Eemf(z) =
U0δ (z)�z0 of the given electromotive force U0 (where δ (z)
is the delta function, and�z0 ‖ �H0 is a unit vector), one gets

[Ez(z)+Eemf
z (z)]|�r∈S = 0. (4)

Here the thin-wire approximation [12] and the boundary

condition for the tangential component of electric field on

the antenna surface are used. Consequently, using the

boundary condition κ(±L ∓ 0) = 0 for the linear charge

density κ(z), one finds for a thin wire that

Ez =−∂Φ
∂ z

=− ∂
∂ z

Lˆ

−L

κ(z′)G(z− z′)dz′ =

−
Lˆ

−L

G(z− z′)
∂

∂ z′
κ(z′)dz′.

Here

G(z− z′) = G(�r,�r′)|x=y=0,�r′∈S =

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|εη |−1/2 sgnε√
−a2 +μ2(z− z′)2

, a2 < μ2(z− z′)2;

− i |εη |−1/2

√
a2 −μ2(z− z′)2

, a2 ≥ μ2(z− z′)2.

(5)

Note that the charge density does not depend on the azimuth

angle in xy-plane because current has only z-component in

the thin-wire approximation.

Hence, the final form of the integro-differential equation

that describes the unknown charge density distribution

along the antenna wire is

Lˆ

−L

G(z− z′)
∂

∂ z′
κ(z′)dz′ =U0δ (z). (6)

Unlike a vacuum case, kernel G(z− z′) of this equation is

singular here not at the source point only but on the reso-

nance cone surface too. Validity of (5) and (6) is discussed

in [13] in more detail.

3 Method of Moments

In order to find an approximate solution of (6), one should

represent function σ(z) as a finite linear combination of the

basis functions fn(z), where n= 1, . . . ,N−1, with unknown

coefficients κn:

κ(z) =
N−1

∑
n=1

κn fn(z). (7)

One of the possible ways to define the basis functions is

to separate the antenna wire into N segments collocating

at points zn, where n = 2, . . . ,N, and points z1 = −L and

zN+1 = L are the wire ends. In general, segmentation may

be nonuniform and asymmetric. However, it is worthwhile

to make symmetric (with respect to z = 0) segmentation for

a symmetric dipole. In this paper, the basis functions are

defined as

fn(z) = 2H(z− zn+1)−H(z− zn)−H(z− zn+2), (8)

where H(z) is the Heaviside step function (see Fig. 2).
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Figure 2. Basis (red) and weight (blue) functions.

Substitution of (7) to (6) gives

N−1

∑
n=1

κn [2G(z− zn+1)−G(z− zn)−G(z− zn+2)] =

U0δ (z). (9)

Importantly, linearity of equation (6) is taken into account

here.

To proceed, one should introduce N − 1 points zc
m located

in the middle of segments:

zc
m = (zm + zm+1)/2, (10)

where m = 1, . . . ,N −1. Then the weight functions are de-

fined as

wm(z) = H(z− zc
m)−H(z− zc

m+1) (11)

(see Fig. 2).

Finally, introducing the inner product of functions as

〈q1(z)q2(z)〉=
Lˆ

−L

q1(z)q2(z)dz, (12)

and making this inner product of each side in (9) and the

weight functions wm(z), one gets the following system of

N −1 linear algebraic equations:

A�κ = �B, (13)

where A is an (N −1)× (N −1) matrix:

Am,n =

zc
m+1ˆ

zc
m

[2G(z− zn+1)−G(z− zn)−G(z− zn+2)] dz, (14)

�κ is a vector of the unknown coefficients κ1, . . . ,κN−1, and
�B is a vector of N−1 elements. If segmentation is symmet-

ric and N is even, all elements of �B equal zero except the

middle element which equals U0. Note that Am,n is evalu-

ated analytically. However, the resulting expression is quite

complicated and not presented here.

Hence, the integro-differential equation (6) is reduced to the

system of linear algebraic equations (13) that can be solved

numerically.

4 Calculation Results

Calculations have been performed for a = 1 mm, L = 5 m,

ε = 1.2, η = −39, and ω/(2π) = 100 kHz. Plasma pa-

rameters and the radiation frequency correspond to the

OEDIPUS-C experiment [3]. The calculated charge distri-

bution κ(z) is shown in Fig. 3 where 40 segments are used.

It can be seen that charge is almost constant along each

dipole arm, and this is in agreement with the theory [6, 9].

A significant change of κ(z) near z = 0 and z = ±L is be-

cause of the edge effects.
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Figure 3. Calculated distribution κ(z).

Since the calculated function κ(z) is piecewise constant, it

is easy to calculate the current distribution I(z) from the the

continuity equation:

I(z) = iω
zˆ

−L

κ(z′)dz′. (15)

Then the input impedance, defined [7] as Z = U0/I(0), is

calculated, and this value is used for accuracy study. The

corresponding theoretical values Zth, that are used for com-

parison, are found in [5, 6, 9]. Figure 4 shows how the

relative error

ξ = (ℜZ −ℜZth)/ℜZth (16)

of computing the radiation impedance ℜZ (with respect

to ℜZth) depends on the number of segments. It may be

surprising that ξ = 0 for N = 2, i.e., when the segmenta-

tion is very rough (1 segment for each dipole arm). How-

ever, this is simply because the theoretical values Zth used

in this study are calculated for the constant charge distri-

bution along each arm. Obviously the method of moments



allows one to calculate κ(z) (see Fig. 3) and, consequently,

Z with a higher level of precision. Hence, Figure 4 should

be treated from this point of view. Anyway, the accuracy

is quite good (ξ ∼ 1% when N ∼ 10). It is also important

that the condition number K of matrix A is not very large

(K ∼ 10) when N ∼ 10. That means that this matrix is not

really ill-conditioned.
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Figure 4. Dependence ξ (N).

5 Conclusion

In this paper, it has been shown that the method of moments

can be used for analysis of antenna excitation of quasi-

electrostatic waves, propagating in cold magnetoplasmas

close to the resonance cone. The corresponding relative er-

ror can be quite small (about 1 %). Hence, the method of

moments can be used for calculations when antennas have

more complex geometry and the spacecraft surface should

be taken into account.

The same technique is obviously can be used for analy-

sis of receiving antennas in resonance magnetoplasmas. In

this case, one should write in (4) the incident electric field

value (at the receiver location) instead of �Eemf. This anal-

ysis is very important, particularly, for calculation of the

receiving antenna effective length Leff. The analytical ex-

pressions have been obtained for the antennas of very sim-

ple geometry only, and it appears that Leff can be signif-

icantly greater than the geometric length when the quasi-

electrostatic waves are received (see [14] and the references

therein).
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