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Abstract

Using Mie scattering, we derive the characteristic modes
of both conducting and dielectric spheres. The results also
provide a physically clear interpretation of the imaginary
part of the characteristic eigenvalues for lossy objects in
general.

1 Introduction

The theory of characteristic modes (TCM) provides orthog-
onal sets of eigenmodes for radiated and scattered fields for
objects of arbitrary shape. TCM has recently become a
popular tool in the antenna community, as the characteris-
tic eigencurrents provide excitation independent insight into
the antenna design process. The general theory was origi-
nally proposed by Garbacz [1, 2] and most implementations
and applications are today based on the Harrington–Mautz
formulation for perfectly conducting (PEC) objects [3].

For dielectric objects, TCM has been far less popular due
to the lack of a surface integral equation (SIE) based for-
mulation with the same properties as in the PEC case. In
a companion presentation [4], we propose a new SIE-based
TCM-formulation and describe why it is free from the spu-
rious modes that have plagued previous SIE-TCM formula-
tions.

In this presentation, we revisit the pioneering work by Gar-
bacz [1, 2] and its connection to Mie series. In particular,
we get analytical expressions for the TCM eigenvalues (and
fields) for both PEC and dielectric spheres. In addition, the
new TCM results for lossy spheres also lead to a very clear
interpretation of the imaginary part of a TCM eigenvalue:
it is simply the ratio of dissipated and radiated power.

2 Mie Scattering

Following Bohren and Huffman [5], with the time conven-
tion e−iωt , the incident electric field is the linearly polarized
plane wave

Ei = E0eikr cos θ êx =
∞∑
n=1

En

(
M(1)

o1n − i N(1)
e1n

)
, (1)

where En = inE0(2n+1)/[n(n+1)] and explicit expressions
for the vector multipoles M,N and explanation of their in-
dices can be found in [5, Sec. 4.3.1]. The scattered electric
field is

Es =

∞∑
n=1

En

(
ianN(3)

e1n − bnM(3)
o1n

)
, (2)

where the Mie-scattering coefficients an (TM) and bn (TE)
for a dielectric sphere with (possibly complex) relative per-
mittivity εr and radius a are

an =
m ψn(mx)ψ ′n(x) − ψn(x)ψ ′n(mx)
m ψn(mx)ξ ′n(x) − ξn(x)ψ ′n(mx)

, (3)

bn =
ψn(mx)ψ ′n(x) − m ψn(x)ψ ′n(mx)
ψn(mx)ξ ′n(x) − m ξn(x)ψ ′n(mx)

, (4)

where m =
√
εr, µr = 1, x = ka and the Riccati–Bessel

functions ψn, ξn are

ψn(ρ) = ρ jn(ρ), ξn(ρ) = ρ h(1)
n (ρ), (5)

where jn and h(1)
n are the usual spherical Bessel and Hankel

functions. For a PEC sphere, the coefficients simplify to

aPEC
n =

ψ ′n(x)
ξ ′n(x)

, bPECn =
ψn(x)
ξn(x)

, (6)

while expressions for the scattering coefficients for spheres
with arbitrary (possibly complex) εr and µr can be found
in [5, Sec. 4.3.3].

From (1) and (2)we can separate theTEandTMcomponents
of the total field E = Ei + Es for each degree n as

ETE
n = En

[
M(1)

o1n − bnM(3)
o1n

]
, (7)

ETM
n = −i En

[
N(1)
e1n − anN(3)

e1n

]
. (8)

Using the above formulas, we can calculate the electric field
anywhere outside the sphere, but it is often convenient to
express the overall response using the extinction, scattering,
and absorption efficiencies [5]

Qext =
2
x2

∞∑
n=1

(2n + 1) Re
{
an + bn

}
, (9)

Qsca =
2
x2

∞∑
n=1

(2n + 1)
(
|an |

2 + |bn |2
)
, (10)

Qabs = Qext −Qsca. (11)



3 Characteristic Modes of a Sphere

In Garbacz’ original work [1, 2] the characteristic equation
is

αnFn(θ, φ) = P Fn(θ, φ), (12)

where αn is the complex characteristic value for the pertur-
bation operatorP and Fn is the corresponding characteristic
far-field pattern function of an incoming or outgoing spher-
ical wave. The complex characteristic value can, moreover,
be expressed as

αn =
−1

1 − i λn
⇔ λn =

1 + αn

i αn
, (13)

where λn is real if the scatterer is lossess and λn is identi-
cal to the TCM eigenvalue in the surface integral formula-
tions following [3]. (Notice, however, differences in time-
conventions.)

The perturbation operator is defined in the following way:
We start with an incoming field f i , which is essentially a
vector multipole with h(2)

n (kr). The corresponding outgo-
ing field f o has similarly h(1)

n (kr). In the absence of any
scatterer f o = I f i , with a suitably defined identity oper-
ator I. Garbacz defines the scattered field f s = P f i as
one half of the perturbation of the outgoing field due to the
scatterer, that is, the total field is

f i + f o+2 f s = f i + f o+2P f i = f i + f o+2αn f o . (14)

In the TEmn case, we can express the total electric field
using the Bohren–Huffman vector multipoles in the form

ETE = ETE
0 M(4)

xmn︸      ︷︷      ︸
f i

+ ETE
0 M(3)

xmn︸      ︷︷      ︸
f o

+2αTE
n ETE

0 M(3)
xmn

= 2ETE
0

[
M(1)

xmn + α
TE
n M(3)

xmn

]
,

(15)

where ETE
0 is a complex constant depending on the normal-

ization of the fields, the subscript x can be either e (even) or
o (odd), and the relation M(4)

xmn +M(3)
xmn = 2M(1)

xmn follows
straightforwardly from the properties of the spherical Han-
kel and Bessel functions h(2)

n + h(1)
n = 2 jn. In the TMmn

case, we similarly get

ETM = ETM
0 N(4)

xmn + ETM
0 N(3)

xmn + 2αTM
n ETM

0 N(3)
xmn

= 2ETM
0

[
N(1)

xmn + α
TM
n N(3)

xmn

]
.

(16)

Comparing the relative amplitude of the scattered and inci-
dent electric fields in (15) vs (7) and (16) vs (8), we get

αTE
n = −bn, αTM

n = −an. (17)

Therefore, the TCM eigenvalues for a sphere can be written
in terms of the Mie-scattering coefficients as

λTEn =
bn − 1

ibn
, λTMn =

an − 1
ian

. (18)

In both the TE and TM cases, the indices xm do not affect
the radial functions and so the complex characteristic values
only depend on the polarization (TE/TM) and degree n.
The modes are degenerated, so that each eigenvalue λn has
multiplicity 2n + 1.

The result (18) works for both PEC and material spheres, as
long as the appropriate Mie-scattering coefficients are used.
The result agrees with [6] in the PEC case.

4 Interpretation of the TCM Eigenvalues

For both PEC and lossless dielectric spheres, the TCM
eigenvalues λn are real, as they should be for any loss-
less scatterer of arbitrary shape [1, 2]. The eigenvalue for a
lossless scatterer or the real part of the eigenvalue of a lossy
scatterer should, in general, be related to stored energy in
the same way as for PEC scatterers [3].

The interpretation of the imaginary part of the TCM eigen-
value is, however, much less known. In [7] Harrington,
Mautz and Chang developed two alternative volume inte-
gral equation based TCM formulations for lossy dielectric
bodies. Depending on the choice of the formulation, the
obtained eigenvalues were either complex or real. However,
any comprehensive study of the role of the imaginary part
of the eigenvalue was not provided. SIE-based formulations
for dielectric objects following [8] produce spurious results,
as discussed in [9], and it appears that the imaginary part of
the eigenvalues has not been given any attention.

For a single characteristic mode and its corresponding Mie-
scattering coefficient cn = an, bn, we have

λn =
cn − 1

icn
, cn =

1
1 − iλn

, (19)

and the scattering and absorption efficiencies (10) and (11)
simplify to

Qsca =
2
x2 (2n + 1) |cn |2, (20)

Qabs =
2
x2 (2n + 1)

[
Re{cn} − |cn |2

]
. (21)

It is fairly straightforward to show that for any complex cn,
we get

Im{λn} =
Re{cn} − |cn |2

|cn |2
=

Qabs
Qsca

=
Pabs
Psca

≥ 0. (22)

Therefore, the imaginary part of the TCM eigenvalue is
simply the ratio of absorbed and scattered power, or equiv-
alently from an antenna perspective, the ratio of dissipated
and radiated power.

For the real part of the eigenvalue, we similarly get

Re{λn} =
Im{cn}
|cn |2

, (23)
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Figure 1. Magnitude of the TCM eigenvalues for a dielec-
tric sphere with εr = 12. Only the first two TE and TM
eigenvalues are shown.
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Figure 2. Magnitude of the real part of theTCMeigenvalues
for a lossy dielectric sphere with εr = 12 + 0.24 i. The SIE
results are plotted using black dots.

but it is not entirely obvious how this is related to stored
energy. In the PEC case, λn agrees with the Harrington–
Mautz solution, as is also evident from the results in [6],
but it would be useful to show how (23) is related to stored
energy in the general case.

A characteristic mode resonates when its eigenvalue is zero,
and so the mode whose eigenvalue is smallest in magnitude
dominates. Instead of looking at the magnitude of the eigen-
value, it is often convenient to study the modal significance
σn, which has a very simple relation to the Mie coefficients

σn =
�����

1
1 − iλn

�����
= |cn | , (24)

where cn = an (TM) or bn (TE).

5 Numerical Example

Figure 1 shows the first two TE and TM eigenvalues for a
lossless dielectric sphere with εr = 12. Three resonances
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Figure 3. Imaginary part of the TCMeigenvalues for a lossy
dielectric sphere with εr = 12 + 0.24 i. The SIE results are
plotted using black dots.
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Figure 4. Comparison of the lossless and lossy TM1 case
near the absorption maximum. The SIE results are plotted
using black dots.

occur in the shown size-parameter range: a magnetic dipole
(TE1) at x = 0.87, an electric dipole (TM1) at x = 1.16,
and a magnetic quadrupole (TE2) at x = 1.26. The electric
quadrupole resonance is slightly outside the figure at x =
1.56. The TM1 peak at x = 1.37 corresponds to an interior
resonance, which does not radiate.

Figures 2 and 3 shows the real and imaginary part of the
TCM eigenvalues for the same sphere with small losses
(εr = 12+ 0.24 i). Except for the TM1 case near the interior
resonance at x = 1.37, the real part of the eigenvalue is very
close to the lossless case. The maximum of the imaginary
part of λTM1 at x = 1.37 in Figure 3 shows that the internal
resonance creates fairly strong absorption although the ma-
terial losses are small. Otherwise, the imaginary part of the
eigenvalue is relatively small compared with the real part, as
one could expect when small losses are added. The behavior
of the TM1 eigenvalue looks very strange near x = 1.37 in
Figure 2, but that is only due to the logarithmic scale. When
plotted on a linear scale in Figure 4, the lossy case more
clearly shows the typical features of a damped resonance.
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Figure 5. Modal significance of the TCM eigenvalues for a
sphere with εr = 12 (solid line) and εr = 12+0.24 i (dashed
line).

Figures 2–4 also include numerical results computed using
the new SIE-based TCM-formulation presented in [4]. As
is evident from the figures, the agreement is excellent.

Figure 5 shows the modal significance of the lowest two
TE and TM eigenvalues for the same dielectric sphere in
both the lossless (εr = 12) and lossy (εr = 12 + 0.24 i)
case. The same resonances as in Figures 1 and 2 can be
clearly observed, but the width of the resonances and their
sensitivity to losses are more clearly visible.

6 Conclusions

In this presentation, we derived analytical expressions for
the characteristic eigenvalues of a sphere in terms of Mie
scattering coefficients. Equivalent expressions for the PEC
case can also be found in [6], but (18) is amuchmore general
solution.

The initial motivation for deriving the analytical results was
to validate a new SIE-based TCM-formulation for dielectric
and magneto-dielectric objects [4]. However, the new an-
alytical solution also provided a physically appealing inter-
pretation of the imaginary part of a characteristic eigenvalue
as the ratio between radiated and dissipated power (22).
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