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Abstract

We present a numerical study of nano-cavities used in so-
lar cells for energy harvesting, by employing surface in-
tegral equations based on Maxwell’s equations in the fre-
quency domain and an efficient solver based on the multi-
level fast multipole algorithm (MLFMA). With the three-
dimensional modeling of surfaces, we obtain accurate re-
sults to evaluate the performances of different structures
for improved power absorption in solar cells. This paper
includes a brief description of the developed solver and ini-
tial numerical examples on various solar cells involving in-
verted pyramids and spherical cavities.

1 Introduction

There is a well-established literature on solar cells [1]–[10],
including the development of alternative geometries, mate-
rials, and configurations to improve their efficiency. Nu-
merical investigation of solar cells supports experimental
studies in the direction of cost-efficient and energy-efficient
structures [5]–[7]. These numerical studies involve circuit-
based models, asymptotic techniques, statistical techniques,
particle-based methods, and volumetric wave-based meth-
ods (particularly finite-difference time-domain method).
On the other hand, many solar-cell scenarios involve only
several different materials and details proportional to op-
erating wavelengths, which can be formulated efficiently
and accurately with surface integral equations derived di-
rectly from Maxwell’s equations. This is particularly the
case when solar-cell surfaces, as the most critical geomet-
ric parameters, need to be designed and analyzed.

In this contribution, we present numerical analysis of nano-
cavities in solar cells using surface integral equations. Sur-
faces and interfaces between different media are modeled
in three-dimensional space and discretized with the Rao-
Wilton-Glisson (RWG) functions on small triangular do-
mains. The derived dense matrix equations are solved it-
eratively, while the matrix-vector multiplications are per-
formed efficiently by using the multilevel fast multipole al-
gorithm (MLFMA). This paper includes the initial results
on the numerical simulations that lead to accurate and im-
portant information on the characteristics of different real-
istic structures. The numerical setup is suitable for arbitrary
geometries, which may enable the geometric optimization

of nano-cavities for improved performances.

2 Brief Description of the Numerical Solver

For numerical simulations of solar cells, we consider sur-
face formulations in the frequency domain assuming time-
harmonic sources. Materials are represented by com-
plex permittivity values. Among alternative formulations,
the electric-magnetic current combined-field integral equa-
tion (JMCFIE) is preferred [11]. Surfaces and interfaces
are discretized by using triangles, on which the RWG func-
tions are defined to expand tangential electric and magnetic
fields. Matrix equations are solved iteratively via Krylov-
subspace algorithms, employing MLFMA for fast matrix-
vector multiplications. For the examples presented in this
paper, the number of unknowns is in the range from 45,234
to 1,767,516. Near-zone electromagnetic interactions are
computed via singularity extraction and Gaussian quadra-
ture rules. Far-zone interactions are computed via the ex-
pansion of the Green’s function in terms of plane waves
with angular sampling based on excess bandwidth formula.
Field up-sampling and down-sampling are performed via
Lagrange interpolation. Accuracy of solutions is verified
by testing the extinction theorem as well as by perform-
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Figure 1. The electric field intensity (dBV/m), the
magnetic field intensity (dBA/m), and the power density
(dBW/m2) in the vicinity of a c-Si block with a corrugated
surface excited at different frequencies.
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Figure 2. The electric field intensity (dBV/m), the
magnetic field intensity (dBA/m), and the power density
(dBW/m2) in the vicinity of 4.2× 4.2× 2.0 µm c-Si slabs
excited at 375 THz. The efficiency improves when inverted
pyramids are used, in comparison to the planar case.

ing mesh convergence. Once the tangential fields at inter-
faces are found, the equivalence theorem is used by radi-
ating sources in homogeneous media to find electric and
magnetic fields, as well as power density distributions, ev-
erywhere. More information on the numerical implementa-
tion can be found in [12].

3 Numerical Investigation of Nano-Cavities

In the following subsections, we consider several different
factors, i.e., frequency dependency of materials, cavity ge-
ometries, and matching layers, that are critical for solar
cells. In all results, the excitation is modeled as a plane
wave propagating directly onto the active surfaces of the
investigated solar cells.

3.1 Frequency-Dependency of Materials

One of the most common materials for building solar cells
is crystalline silicon (c-Si). While it has many favorable
properties, c-Si has a relatively large contrast values (with
respect to air), making it less effective and efficient for har-
vesting solar energy at some frequencies. As the frequency
increases, the real part of the permittivity increases, de-
teriorating the match between air and solar cell. At the
same time, the loss (represented by the imaginary part of
the permittivity) also increases so that the absorption oc-
curs mainly in the vicinity of the interfaces. As an exam-
ple, Fig. 1 presents the electric field intensity (in dBV/m),
the magnetic field intensity (in dBA/m), and the power den-
sity (in dBW/m2) for a c-Si block excited at different fre-
quencies. The cross section of the block is a 5.0×5.0 µm
square, while its top (illuminated) surface is randomly cor-
rugated. When the wavelength is 1100 nm (frequency is ap-
proximately 273 THz), the electromagnetic radiation effec-
tively penetrates into the block. At this frequency, the rela-
tive permittivity of c-Si is taken as 12.54+0.0043i. When
the wavelength is 700 nm and the frequency is approxi-
mately 428 THz, the relative permittivity of c-Si becomes
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Figure 3. The electric field intensity (dBV/m), the
magnetic field intensity (dBA/m), and the power density
(dBW/m2) in the vicinity of 7.7× 7.7× 2.0 µm c-Si slabs
excited at 375 THz. Inverted pyramids with different angles
(30◦, 40◦, 50◦, and 60◦) are used.
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Figure 4. The electric field intensity (dBV/m), the
magnetic field intensity (dBA/m), and the power density
(dBW/m2) in the vicinity of 7.7× 7.7× 2.0 µm c-Si slabs
excited at 375 THz. The slab with spherical cavities (right)
is compared to the one with inverted pyramids (54.7◦ an-
gle).

approximately 14.32+0.0921i. In this case, the mismatch
increases slightly, but the higher loss leads a quick decay
inside the block. Finally, when the wavelength becomes
350 nm (at approximately 857 THz) and the relative permit-
tivity becomes approximately 20.97+32.88i, the mismatch



250 THz

5 dBV/m

0

-15

-10

-5

300 THz 350 THz 400 THz 450 THz

500 THz 550 THz 600 THz 650 THz 700 THz

Electric Field Intensity

1 µm

No
 L

ay
er

W
ith

 L
ay

er
No

 L
ay

er
W

ith
 L

ay
er

Figure 5. The electric field intensity (dBV/m) in the vicinity of c-Si slabs with inverted pyramids excited at different frequen-
cies. In addition to the pure c-Si slab, results for a c-Si slab covered with a thin layer of Si3N4 is considered.
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Figure 6. The power density (dBW/m2) in the vicinity of c-Si slabs with inverted pyramids excited at different frequencies. In
addition to the pure c-Si slab, results for a c-Si slab covered with a thin layer of Si3N4 is considered.

further increases, while most of the absorption occurs just
beneath the surface.

3.2 Reducing Mismatch via Inverted Pyra-
mids

Using cavities in the shape of inverted pyramids is a well-
known technique [9] to improve the efficiency of solar cells.
As an example, Fig. 2 presents field and power density dis-
tributions for 4.2× 4.2× 2.0 µm c-Si slabs. In addition to
the one with a planar top surface, a slab on which 6× 6
inverted pyramids are opened is considered. The pyra-
mid angle is selected as 54.7◦, which usually leads effi-
cient results [9]. The slabs are excited at 375 THz from

the top. The relative permittivity of c-Si at this frequency
is 13.65+ 0.0484i. It can be observed that the pyramids
significantly improve the penetration into the slab, while
reducing reflection from the top (illuminated) interface.

Inverted-pyramid cavities are effective; but their geometric
parameters are extremely important and the performance
of a solar cell strictly depends on them. As an example,
Figs. 3 and 4 present field and power density distributions
for 7.7×7.7×2.0 µm c-Si slabs. Once again, the frequency
is set to 375 THz (13.65 + 0.0484i relative permittivity).
On the top surfaces, 7× 7 inverted pyramids with differ-
ent angles, i.e., 30◦, 40◦, 50◦, and 60◦, are used. It can be
observed that solar-cell characteristics change significantly



with the pyramid angle. For smaller angles (e.g., 30◦ and
40◦), the reflection is significant, which is visible as oscilla-
tory variations (due to interference of incident and reflected
waves) in the reflection region. As the angle increases to
50◦ and 60◦, the electromagnetic power is trapped inside the
cavities and the reflection is significantly reduced. These
results verify the optimality of 50◦−60◦ for inverted pyra-
mids.

3.3 Alternative Nano-Cavity Geometries

As shown in the literature, other kinds of nanostructures
(e.g., metallic/plasmonic nanoparticles and nanowires [1]–
[5],[10]) and nano-cavities [8] can be used to improve the
efficiency of solar cells, while the performances may vary
significantly. In order to demonstrate an alternative struc-
ture, which can perform as good as inverted pyramids at
certain frequencies, Fig. 4 depicts a comparison involving
7.7× 7.7× 2.0 µm c-Si slabs at 375 THz. In addition to
inverted pyramids with 54.7◦ angle, we consider spherical
nano-cavities opened on the top (excited) surface. We note
that the diameter of the spheres is just below the wave-
length, for which the cavities tend to resonate. It can be
observed that two solar-cell structures in Fig. 6 behave al-
most the same with very good absorption characteristics.

3.4 Using Matching Layers

Since geometric improvements can be limited, matching
layers can be used to further enhance the efficiency of so-
lar cells. Particularly silicon nitride (Si3N4) is a common
material to cover cell surfaces made of c-Si. As an exam-
ple, Figs. 5 and 6 present the electric field intensity and
the power density, respectively, in the vicinity of c-Si slabs
from 250 THz to 700 THz. Inverted pyramids with 54.7◦

angle are used to improve the efficiency of solar cells. In
addition to the pure c-Si slab, we consider the one covered
with a thin Si3N4 layer. It can be observed that the absorp-
tion increases significantly (that can be deduced from the
patterns in the reflection region, especially in the plots of
electric field intensity) at most frequencies.

4 Concluding Remarks

Surface integral equations derived from Maxwell’s equa-
tions are suitable for numerical analysis of solar cells. As
shown in this paper, accurate solutions obtained by using a
robust implementation provide essential information on dif-
ferent structures, particularly on the nano-cavities that are
used for enhancing the efficiency solar cells. The flexibil-
ity of the developed implementation that allows for three-
dimensional modeling makes optimizations possible, which
will be addressed in a future publication.
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