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Abstract

Current figures-of-merit to assess polarimetric performance
of an antenna (array) are based on the far-field response of
the antenna (array). This implicitly assumes that the noise is
spatially white and that there is no noise coupling between
the receiver paths in the system. In this paper, I demon-
strate that this may have a profound effect on the capability
of the antenna system to reconstruct the polarisation of a re-
ceived signal and propose a new figure-of-merit to capture
that reconstruction capability.

1 Introduction

Figures-of-merit (FoM) like cross-polarisation discrimina-
tion (XPD) [1], cross-polarisation isolation (XPI) [1] and
intrinsic cross-polarisation ratio (IXR) [2] are commonly
used to characterise the polarimetric performance of an-
tenna systems. These FoMs measure the orthogonality of
the far-field response of the antenna (array) to two incom-
ing plane waves with perfectly orthogonal polarisation, i.e.,
these FoMs assess the response to an incoming signal with-
out considering the noise in the individual receive paths of
the antenna (array). This effectively means that the receiver
noise is assumed to be spatially white. In many practical
systems, this may not be true due to a spatially non-white
distribution of background noise [3] or due to noise cou-
pling [4, 5].

This may have a significant impact on the ability to recon-
struct the polarimetric state of the field received by the sys-
tem. Consider, for example, an antenna consisting of two
ideal, orthogonally-oriented dipoles observing in the bore-
sight direction. According to the standard FoMs mentioned
above, this is a perfect antenna in terms of polarimetric per-
formance. However, if the noise power in the receive path
of one of the dipoles is a factor 10 higher than that in the
other receive path, the sensitivity of this system to linear
polarisation aligned with the first dipole is a factor 10 lower
than that to the orthogonal direction of polarisation. This
is obviously undesirable when one needs to be able to re-
construct the polarimetric state of incoming signals with,
possibly, arbitrary polarisation. Even in radio astronomical
observations aiming to detect weak sources, where we can
usually assume that the incoming signal is unpolarised, it is
desirable to receive both polarisation with (close to) equal

sensitivity. This is due to the fact that one needs to assign
weights proportional to the signal-to-noise (SNR) ratio to
each received polarisation before adding them to maximise
the SNR of an unpolarised source.

In this paper, I therefore propose a new FoM based on the
sensitivity ratio of best and worst detectable polarimetric
state. This FoM retains the attractive property of the IXR
that it is independent of the choice of coordinate system
used to describe the geometry of the antenna and polarisa-
tion state of the electromagnetic field.

2 System model

Following the conventions used in [6], the response of an
array of antennas can be characterised by the voltage re-
sponses of all feeds to two sources with unit power and per-
fectly orthogonal polarisation, which can be denoted by u
and v. These voltage responses can be stacked in vectors
v, and vy, which can be combined in a matrix V = [v,, v,].
If the array is observing a single source with 2 x 2 source
covariance matrix X, the array covariance matrix for the full
array can be modeled as

R=R,+R, =VIV7 LR, (1)

where Ry is the noise-free array covariance matrix in re-
sponse to the external source and R;, is the noise covariance
matrix.

To get an intuition for this abstract formulation of the ar-
ray response, consider an array of identical antennas, each
consisting of two feeds, whose antenna response can be de-
scribed by a Jones matrix J. Assuming that the feed num-
bering is chosen such that the two feeds of each antenna
have consecutive indices and that the geometrical delay be-
tween each antenna is the same (or perfectly compensated),
the matrix V is described by V= 1® J, where 1 denotes a
vector with length equal to the number of antennas in the
array containing only ones and ® denotes the Kronecker
product.

A polarimetric antenna array requires a beamformer with
two output ports. The output signals at the two output
ports are obtained by adding the individual feed signals
with weights w; and w, respectively. After stacking those



weights in a matrix W = [w}, w;], the covariance of the two
beamformer output signals can be described by

R, = W/RW
WHVEVEW + WHR,W. 2)

3 Sensitivity and optimal beamforming

The sensitivity, measured as the ratio of effective area A,
and equivalent antenna noise temperature Tgys, of an an-
tenna (array) with a single-polarisation beamformer using
weight vector w is given by

Ae  kgB wHRew
Tys Sy WHR,w’

3)

where kg is the Boltzmann constant, B is the observed
bandwidth and S is the power flux density of the received
wavefront. The two-port beamformer introduced above can
only construct a beam matched to a specific polarisation by
forming a superposition of the two output ports, i.e., using
weights w = Wa where a = [a,a,]”. As shown in the ap-
pendix of [6], we can introduce a’ = C~/2V#Wa where

C=VIW (W/R,W) ' WHY. (4)

The matrix C represents the covariance matrix of the two
beamformer output ports after whitening the noise at the
beamformer output ports. As a result of this, we obtain

A.  kpB a'flca’
Tsys Ss a’Ha’ '
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This implies that the sensitivity of the two beamformer out-
puts to any specific polarisation state lies in the field-of-
values [7] of the matrix C. The sensitivity of the individual
beamformer outputs is therefore bounded by

A. _ kB

<
Tsys Ss

kgB
%Amin < )Lmax» (6)
S

where Apin and Ay are the smallest and largest eigenvalue
of C respectively.

An optimal beamformer maximises the SNR of the source
while perfectly reconstructing the polarisation state of the
source. Mathematically, this can be formulated as

argmin Trace {WHRnW} subjectto WAV =1 (7)
w

where I denotes the identity matrix. Solving for W gives
the optimal beamformer weights

Wop =RV (VIR;'V) ®)
Determination of the optimal beamforming weights thus re-

quires knowledge of the far-field response of the feeds as
described by V and the noise covariance matrix R,. In

the design phase of an instrument, these can be obtained
from detailed electromagnetic simulations (see [8] for an
example). Experimentally, the far-field responses can be
obtained using holographic measurements [9] or using a
test source [10], while the noise covariance matrix can be
estimated by an off-source measurement, i.e., by observing
an empty scene.

4 Sensitivity ratio FoM

The key features of the IXR as a FoM for polarimetric per-
formance are that it provides an estimate of the possible
magnification of errors (due to both instrumental modelling
errors and noise) during reconstruction of the polarisation
state of the incoming signal and that it is independent of
the coordinate system chosen to describe the measurement.
This is accomplished by defining the IXR in terms of the
condition number of the Jones matrix x (J) describing the
antenna response:

(k) +1 2
IXR-(K(J)_1> | ©)

The condition number of a matrix can be calculated by tak-
ing the ratio of its largest and smallest singular values. A
physical interpretation of the condition number of the Jones
matrix of an antenna is therefore the ratio of the maximum
possible and minimum possible voltage gain provided by
the antenna depending on the polarisation state of the re-
ceived signal.

Based on Eq. (6), we can define, in a similar way, the ra-
tio of the sensitivity to a signal in the most favourable po-
larisation state and the sensitivity to a signal in the least
favourable polarisation state. This results in the Sensitivity
Ratio (SR) FoM

_ Amax

Afmin ,
where Anax and A, are, respectively, the largest and small-
est eigenvalues of C as defined in Eq. (6). Since C is a nor-
mal matrix and is positive semidefinite, the SR defined in
Eq. (10) is equal to the condition number of C.

SR

(10)

To understand how the SR is related to x (J), and thus to
the IXR, let us consider a single dual-polarisation antenna
characterised by Jones matrix J, i.e., V =]J, and noise co-
variance matrix R, = oyl, where o, is the noise power in
each receive path. Substitution of Eq. (8) in Eq. (4) gives

Copt = VAR, 'V. (11)
For the scenario in our example, this becomes
Cop =0, 'TI=0,"J"]J. (12)

Since the largest singular value of J is equal to the square
root of the largest eigenvalue of J#J and a similar rela-
tion holds between the smallest singular value of J and the
smallest eigenvalue of J7 J, we have

SR = Kk (Copt) = K> (J). (13)



Note that the scaling with ;! does not affect this relation-
ship as a scaling of all eigenvalues cancels in the ratio of
those eigenvalues.

S Example: non-diagonal noise covariance
matrix

To illustrate the significance of the assumption that R, =
ounl, i.e., that the noise is spatially white, let us consider
an antenna consisting of two orthogonally-placed ideal
dipoles. The jones matrix for this antenna can be described
by

| cos¢cos® —sing

o [ singcos®  cos¢ ] ’ a4
where 6 and ¢ denote the boresight angle and azimuthal
angle respectively. To construct a spatially non-white noise
covariance matrix, let us assume the following model for

Ry:
1 o
an[a 1], (15)

where the parameter o can be used to tune the strength of
the effect of correlated noise between the two feeds. Note
that both J and R, require scaling factors to describe a sys-
tem with physically meaningful antenna gains and noise
powers. Since these factors will cancel once we calculate
gain or sensitivity ratios, we can ignore these factors in our
analysis for convenience of notation.

Substitution of Egs. (14) and (15) in Eq. (11) gives

1
1—a?
cos? 0 —asin2¢ cos’® —ocos2¢ cos O
—oacos2¢cos 1+ asin2¢

Copt =

(16)

This shows that the eigenvalues of Copy, and hence their ra-
tio, are a function of azimuth and boresight angle. When
the noise is spatially white, o = 0 and the azimuthal depen-
dence vanishes. To obtain bounds on the SR when o # 0,
we can solve the characteristic polynomial in closed form,
and differentiate (Amax — Amin)z with respect to ¢ to find
the azimuthal angle for which the difference between the
two eigenvalues is maximised or minimised. This happens
when cos2¢ = 0, i.e., when sin2¢ = £1. This simplifies
the expression for Cop to

1 (1Fa)cos’8 0

Copt = T2 0 1+«

A7)

This gives the characteristic polynomial
(1Fa)cos?0—A) (1+a)—A)=0,  (I8)
from which the following eigenvalues are obtained:

M = 1+:a
A = (1Fa)cos’6 (19)
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Figure 1. Sensitivity ratio as function of boresight angle

for ¢ = 0. The dotted black curve shows k (J)* while the

solid black curves show the upper and lower bound for the
variation in SR over azimuth (coinciding in this case).

This implies that the SR varies as function of azimuth be-
tween lower bound

(14 a)cos® 0 -«
SRpin = 20
i max{ l-a "(1+a)cos?6 20)
and upper bound
l+a
SRpjax = ——+—5—- 21
T (1 —a)cos? @ @D

Note that both bounds depend on the value of ¢. The IXR,
on the other hand, is insensitive to the level of spatial non-
whiteness of the noise covariance matrix as it is computed
based x (J), which, using Eq. (13), follows from

1
=—. 22
a=0) [cos 0] @2)

k(@)= /% (Con

Note that the upper and lower bound for the SR converge to
the square of this value when o converges to 0. This allows
us to relate the SR to the IXR.

To validate the findings above, this scenario was simulated
numerically. The results are shown in Figs. 1 and 2 for
a =0 and o = 0.2 respectively. In both plots, the dotted
black curve shows k (J)?, which gives the SR for the case
of spatially-white noise, while the solid black curves show
the upper and lower bound for the SR. Between the bounds,
there are many grey curves showing the SR for a series of
azimuthal angles between 0 and 27. In Fig. 1, all curves
coincide, as expected. Figure 2 shows that the introduc-
tion of spatially non-white noise has a significant impact
on system performance. Towards boresight, the upper and
lower bound for the SR are the same, but both are higher,
i.e., worse, than when o = 0. At higher boresight angles,
in particular above 25°, the sensitivity ratio is better than
one would expect purely based on the antenna response to
the external signal for some azimuthal angles while being
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Figure 2. Sensitivity ratio as function of boresight angle

for o = 0.2. The dotted black curve shows & (J)? while the

solid black curves show the upper and lower bound for the

variation in SR over azimuth and the grey curves show the

actual SR at specific azimuth angles.

worse at other azimuthal angles. Depending on what is con-
sidered to be an acceptable sensitivity ratio, the boresight
angle at which the threshold is passed can vary by over 15°
as function of azimuth angle. This example therefore illus-
trates that the presence of correlated noise between receive
paths may have a significant impact on the scan range over
which the antenna (array) meets the desired performance.

6 Conclusions

Current figures-of-merit (FoMs) for the polarimetric perfor-
mance of an antenna (array) are purely based on the far-field
response of the antenna (array). These FoMs therefore ne-
glect the effect that spatially non-white noise (e.g., due to
inhomogeneous background noise or noise coupling) may
have on the reconstruction of the polarisation state of the
received signals. To overcome this drawback, a new FoM
for polarimetric performance, the sensitivity ratio (SR) is
introduced. The SR is defined as the ratio of the sensitivity
of the antenna (array) to a signal with the most favourable
polarisation and a signal of identical power with the least
favourable polarisation. The SR is independent of the co-
ordinate system used to describe the measurement system,
can account for any noise covariance structure and can be
computed for individual antennas as well as beamformed
arrays. For spatially white noise, we have a simple relation
between SR and IXR. With a numerical example amenable
to closed-form analysis the possible significance of spa-
tially non-white noise was illustrated.
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