

CHARACTERIZATION OF SLAB-THICKNESS AND B₀ PARAMETER AND COMPARISON WITH IRI MODEL OVER AN EQUATORIAL STATION IN AFRICA

O.O Odeyemi*(1), J.O. Adeniyi (2), and O.S. Bolaji(1) (1) University of Lagos, Akoka, Lagos, Nigeria., e-mail: olumidephysics@yahoo.com; (2) Landmark University, Omu-Aran, Nigeria; e-mail: adeniyi.jacob@lmul.edu.ng

The present study investigates the simultaneous morphologies of slab-thickness (τ) and thickness parameter (Bo) over an equatorial region of Ilorin (8.50N, 4.68E; dip lat. 2.95) during a low solar activity of the year 2010. Apart from daytime signatures of the τ and Bo that are not primarily influenced by PEC, we found that between two to three hours in the pre-sunrise and dusk periods are mainly controlled by PEC that evolved as huge peaks in the τ and Bo. Also, our investigation reveals that the Bo profile is thicker than the τ profile during the presunrise in June which may indicates partial flow or halt of PEC. The result revealed approximately the same values of τ and Bo around the sunrise period that may be due to the absence or small PEC contributions. we found a significant association between τ and Bo with the highest coefficient value observed during the June seasons that indicates the possible prediction of τ in the absence of Bo. The validation of International Reference Ionosphere (IRI) model with observed τ and Bo revealed appreciable discrepancies between the model and observed values, particularly between the IRI- τ and observed τ values that indicates a higher percentage of changed difference in all hours of the months. Our result in November and December revealed the underestimation of IRI- τ with respect to observed τ value as reported in the validation of IRI- τ in all regions.