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Abstract 
 

In this paper, we explain the concept of higher symmetries, 

their implications and possible applications within 

electromagnetic technology. 

 

1. Definition of Higher Symmetries 
 

There are two types of higher symmetries: glide and twist 

symmetry. A periodic unit cell possesses twist symmetry if 

it is repeated after a translation and a rotation [1,2]. 

Mathematically, this means that for a period d in z 

direction, a p-fold twist-symmetric structure will be 

invariant under the following transformation: 

z → z + d/p  

φ → φ + 2π/p    (1)  

r → r 

with φ and r being cylindrical coordinates, and p an integer. 

On the contrary, a unit cell will be glide-symmetric if it can 

be repeated after a translation and a mirroring [3,4], which 

can be expressed as follows:  

x → x + d/2  

y → y+ d/2    (2)  

z → -z 

 

For example, in Fig. 1, we have represented a two-

dimensional glide-symmetric structure. The unit cell is 

rectangular, with periodicity d in these two dimensions. 

Additionally, the unit cell is mirrored vertically to produce 

the top layer. 

 

Figure 1. Two-dimensional glide-symmetric periodic 

structure. The unit cell is rectangular, and it is composed 

by a conical shape inserted in both bottom and top layers.  

2. Implications and Applications of Higher 

Symmetries 
 

Higher symmetries have demonstrated to produce 

interesting features for a given number of applications. For 

example, in [5-7], glide symmetry demonstrated to be able 

to increase the bandwidth of operation, and in [8,9] to 

increase the density of the materials. These properties can 

be employed to produce, for example, Luneburg lenses, 

which find application in high frequency 5G antennas. 

Additionally, glide-symmetric holey metallic unit cells 

were demonstrated to produce broadband bandgaps, in 

contrast to conventional holey structures. These properties 

created an opportunity to produce cost-efficient version of 

gap-waveguide technology [10-12], and contact-less 

flanges with low leakage [13]. 

More recently, glide-symmetric unit cells have been 

employed to enable low-dispersive propagation in co-

planar waveguides and slots [14, 15], which are suitable to 

produce low-dispersive leaky wave antennas.  

Finally, more exotic configurations based on twist 

symmetries have been recently studied [16-18]. Twist-

symmetric structures demonstrated to produce low-

dispersive responses [16,17] and bandgaps that associated 

to their symmetries [17,18]. These configurations find 

application for low-dispersive leaky-wave antennas, and 

low-loss fully-metallic high frequency technology as 

reconfigurable filters and phase shifters. 

It is remarkable that higher-symmetric structures require 

a large coupling between sub-elements in order to produce 

a distinctive behaviour when compared with conventional 

technology. This has also motivated the recent 

development of numerical and analytical methods which 

can characterise these structures. These methods include 

circuit models as in [19] and mode matching technique as 

introduced in [20-22].  
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