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Abstract

In this contribution we evaluate the performance of three
numerical methods to solve the Maxwell-Liouville-von
Neumann equations (a generalization of the Maxwell-
Bloch equations). First, we verify that our implementations
of the methods (using the OpenMP standard for paralleliza-
tion) exhibit good performance scalability. Then, we com-
pare the absolute performance values of the methods and
discuss their advantages and drawbacks.

1 Introduction

The Maxwell-Liouville-von Neumann (MLN) equations
combine the classical treatment of Maxwell’s equations
with the quantum mechanical Liouville-von Neumann
equations. This semi-classical method is a valuable tool
for the investigation of light-matter interaction on small
scales and in particular for the modeling of quantum cas-
cade lasers (QCLs).

Due to their nonlinearity, numerical methods are usually
required to solve the MLN equations. Often, the rotating
wave approximation (RWA) and the slowly-varying enve-
lope approximation (SVEA) are applied in order to reduce
the computational workload. These approximations, how-
ever, omit substantial features of the solution [1] and will
fail when used for the simulation of broadband QCL fre-
quency combs. Hence, we concentrate on numerical meth-
ods which do not employ the RWA/SVEA.

Of course, the increased computational workload of nu-
merical methods beyond the RWA/SVEA must be treated
appropriately.  Several research groups have presented
their approaches using different parallelization techniques.
However, performance data and/or optimization details
have rarely been in the focus of the corresponding pub-
lications, the comparison in [2] being a notable excep-
tion. We aim to perform a similar comparison for the one-
dimensional MLN equations. Therefore, we have extended
our previous research [3] by implementing additional meth-
ods on top of our common open-source framework and
evaluated the performance of the implementations.

Naturally, the accuracy of numerical methods is important
and is discussed in this contribution. In particular, the ques-

tion whether a certain method preserves the properties of
the density matrix is crucial [4] and has to be answered.

The rest of this paper is structured as follows: The MLN
equations are introduced in the following section. Sub-
sequently, various methods to treat Maxwell’s equations
and the Liouville-von Neumann equation numerically are
discussed. Finally, we present the implementation of the
most promising candidates and compare their parallel per-
formance.

2 Description of the Maxwell-Liouville-von
Neumann (MLN) Equations

In this contribution we consider Maxwell’s equations in one
dimension for the field components E; (x,) and H, (x,t),

OE, =& ' (—~0E,— 9P, + d.H,), (1a)
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where x is the propagation direction, y and z are the lateral
coordinates, and ¢ is time. The equations include the con-
ductivity o, permittivity €, and permeability u of the active
region material as well as the polarization term P, (x, 7).

Furthermore, we consider a sufficiently large number of
quantum mechanical systems, which are distributed along
the propagation direction of the electromagnetic wave.
Each system is described by a n x n density matrix p (for n
energy levels). The time evolution of each density matrix is
given by the Liouville-von Neumann equation

op =—ih"" [H,p] + Pphen 2)

where 7 is the reduced Planck constant, H is the Hamil-
tonian, and Pypen is a phenomenological term introducing
dissipation. It should be noted that for n = 2 energy levels
the term “Maxwell-Bloch equations” is more common.

Equations (1) and (2) are coupled by the Hamiltonian
H (E;), which depends on the electric field, and the polar-
ization

P.=NTe{fp}, 3)

where [l is the dipole moment operator and N is the density
of quantum mechanical particles in the system.



3 Numerical Treatment of the MLN Equa-
tions

There is a multitude of numerical methods that solve
Maxwell’s equations with different strengths and draw-
backs. In the context of coupling Maxwell’s equations to
the Liouville-von Neumann or Bloch equations, the finite-
difference time-domain (FDTD) method [5] is widely used,
e.g., in the pioneering work by Ziolkowski et al. [1] and
publications that base on it [4, 6, 7, 8, 9]. While FDTD
is relatively straightforward to implement and parallelize,
its main drawback is the numerical dispersion it introduces.
In order to avoid artifacts in the simulation results, the dis-
cretization must be chosen very fine.

Therefore, the approaches in [2, 10] use the pseudo-spectral
time-domain (PSTD) method [11]. This method mini-
mizes the numerical dispersion, allowing for coarser dis-
cretization and thereby reducing the computational work-
load. However, the implementation of sources, sharp ma-
terial parameter changes, and boundary conditions is more
elaborate [11].

Both FDTD and PSTD have been coupled to the operator
splitting (OS) technique introduced in [4, 6], that solves
the Liouville-von Neumann equation. This technique is
computationally expensive, but guarantees to preserve the
positive semidefiniteness of the density matrix. In [4] it
was demonstrated that this does not hold for the predictor-
corrector (PC) method used in [1, 7], at least when more
than two energy levels are considered. Finally, different ap-
proaches using the fourth-order Runge-Kutta (RK) method
have been presented in related literature (e.g., in [8, 9, 12]).
This method is promising with respect to performance, but
has not been analyzed in terms of the preservation of the
density matrix properties yet.

4 Implementation, Verification and Perfor-
mance

We implemented three of the most promising approaches
(FDTD-PC, FDTD-OS and FDTD-RK) on top of our open-
source framework mbsolve [13]. Our implementations
were based on the adjoint representation (also known as
pseudospin or Bloch vector representation) [14], which has
already been used in [1, 7]. This representation exploits the
redundancy of information in the density matrix and min-
imizes the quantities which must be updated at every time
step.

The code was parallelized using the OpenMP standard. Fol-
lowing the recommendations from [15], we traded costly
synchronization operations for redundant calculations and
were able to achieve good performance scalability on a
quad-socket Intel Xeon Processor E7-4870 with 40 phys-
ical cores in total. The value of the parallel efficiency
E4 = S/40, where S denotes the speedup using all 40 cores,

varied between 70 % and 90 % (depending on the numerical
method and the problem size).

Prior to the performance measurements, we verified our
implementations with the help of the simulation exam-
ples from [1] and [16]. Then, we measured the execu-
tion times of our implementations for the test setup in [1]
and calculated the number of grid point updates per second
P = NN, [fexec, Where Ny and N; are the number of spatial
and temporal grid points, respectively, and ... is the mea-
sured execution time.

Figure 1 shows the performance comparison of the different
methods for varying problem sizes. The predictor-corrector
method is significantly faster than both other methods,
while the Runge-Kutta approach is about two times faster
than the operator splitting technique. The inferior perfor-
mance of the latter is due to the costly evaluation of ma-
trix exponentials. In the current implementation, the Padé
approximation provided by the Eigen library [17] is used.
However, we found that the matrix exponentials can be
evaluated more efficiently when using the adjoint represen-
tation [18]. This optimization will be incorporated in future
performance comparisons.
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Figure 1. Results of performance measurements of the
FDTD method coupled with the predictor-corrector (PC),
the operator splitting (OS), and the Runge-Kutta (RK) ap-
proach, respectively.

5 Conclusion and Outlook

In summary, we present parallelized implementations of
different methods for solving the Maxwell-Liouville-von
Neumann equations based on an open-source platform and
compare their performance. Although the operator splitting
method is the computationally most intensive method and
shows the least performance, it guarantees physically real-
istic results. The Runge-Kutta method performs better, but
it must be clarified whether this method preserves the den-
sity matrix properties. This analysis will be one of our next
steps.

In order to improve accuracy (and maybe even to reduce the
execution time of the simulation), the PSTD method can be



employed. Therefore, future work will concentrate on the
implementation and evaluation of the PSTD method.

As already mentioned, there are many numerical methods
to solve Maxwell’s equations apart from FDTD and PSTD.
Hence, further investigations should consider the inclusion
of a different method in order to improve accuracy and per-
formance of the simulations.
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