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1 Extended Abstract

Solar EUV, Lyman-alpha (Lα) and X-ray fluxes provide the sources of ionization that sustain the D-region iono-
sphere in the daytime [e.g., Nicolet and Aikin, JGR, 65, 1469, 1960]. After sunset, the solar inputs disappear, and
the D-region relaxes to a state of very weak ionization. The D-region ionosphere is particularly difficult to measure
due to the very low electron densities. Nonetheless, the D-regionis integrally important in a number of areas in
heliophysics, aeronomy, and long-range communications. It couples to the higher regions of the ionosphere and
to the neutral atmosphere through atmospheric gravity waves, energetic particle precipitation, and transport. Ener-
getic particle precipitation inputs from the radiation belts deposit energy in the D-region, where ion chemistry then
controls the production of odd nitrogen and its descent to lower altitudes.

The 2017 solar eclipse provides a unique opportunity to study the D-region ionosphere and its response to solar
inputs. In this work, we present observations and modeling of the D-region ionosphere and its response to the solar
eclipse. We measure the D-region response via subionospheric VLF transmitter signals, which propagate in the
waveguide formed by the Earth and the D-region ionosphere. From VLF receivers at Bear Lake, Utah; Boulder,
Colorado; and Elginfield, Ontario, we record the amplitude and phase of the 25.2 kHz transmitter signal broadcast
from Lamoure, North Dakota. As the eclipse track crosses the VLF transmitter-receiver path, we observe a large
perturbation to both the amplitude (>10 dB) and phase (>100 deg) at the Utah and Colorado receivers, as expected.

We next conduct modeling of the D-region response and VLF signals to reproduce the observed data. We apply
occultation factors – which provide the fraction of solar insolation as a function of latitude, longitude, altitude and
time – to the sources in the Whole Atmosphere Community Climate Model with D-region chemistry (WACCM-D)
and the Sodankyla Ion and Neutral Chemistry (SIC) model. SIC uses a detailed chemistry model to estimate the D-
region electron density due to solar sources; WACCM-D uses a truncated chemistry, but provides a global solution
including circulation and horizontal transport. By using these models, we are able to tune particular solar inputs,
including hard and soft X-rays, EUV, and Lα , to compare their relative contributions to the D-region ionization.
Next, we take 2D (altitude-range) slices of the electron density response along VLF transmitter paths from North
Dakota to our receivers. We then simulate the VLF signal along this propagation path using our Finite-Difference
Time-Domain VLF propagation model. Finally, we compare our modeled VLF amplitude and phase, and their
variation over the duration of the eclipse, with the observed data at both VLF sites.


